Lecture VII

Shape analysis and higher regularity of bivariate subdivision schemes

Ulrich Reif

Technische Universität Darmstadt

Bertinoro, May 21, 2010

Assessment fo subdivision surfaces, today

Designer 1 (Nintendo):

Subdivision surfaces are *sufficiently smooth, by far.*

Designer 1 (Nintendo):

Subdivision surfaces are *sufficiently smooth, by far.*

Designer 2 (Pixar):

Subdivision surfaces are *sufficiently smooth, from afar.*

• • = • • = •

Designer 1 (Nintendo):

Subdivision surfaces are sufficiently smooth, by far.

Designer 2 (Pixar):

Subdivision surfaces are *sufficiently smooth, from afar.*

Designer 3 (Mercedes):

Subdivision surfaces are far from sufficiently smooth.

2 / 22

• A subdivision surface **x** is the union of *spline rings*,

$$\mathbf{x} = igcup_{m \in \mathbb{N}_0} \mathbf{x}^m.$$

Each spline ring is a linear combination of *generating functions* and *control points*,

$$\mathbf{x}^m = \sum_i g_i \mathbf{p}_i^m = G \mathbf{P}^m.$$

 The sequence of control points is obtained by repeated application of the subdivision matrix,

$$\mathbf{P}^m = A^m \mathbf{P}^0.$$

(日) (同) (三) (三)

Setup

• Eigenvalues

 $|\lambda_0| \geq |\lambda_1| \geq \cdots \geq |\lambda_L|,$

• Left and right eigenvectors

$$Av_{\ell} = \lambda_{\ell}v_{\ell}, \quad w_{\ell}A = \lambda_{\ell}w_{\ell},$$

• Eigenfunctions and eigencoefficients

$$f_{\ell} = G v_{\ell}, \quad \mathbf{q}_{\ell} = w_{\ell} \mathbf{P}.$$

• Eigen-expansion

$$\mathbf{x}^m = \sum_{\ell} \lambda^m f_\ell \mathbf{q}_\ell$$

イロト イヨト イヨト イヨト

Generic assumptions

• The *sub-dominant eigenvalue* is double

 $\lambda := \lambda_1 = \lambda_2 > |\lambda_3|$

• The characteristic map is regular and injective,

 $\Psi := [f_1, f_2] = G[v_1, v_2], \quad \det D\Psi \neq 0.$

• The *subsub-dominant eigenvalue* is denoted by μ ,

$$1 > \underbrace{\lambda_1 = \lambda_2}_{\lambda} > \underbrace{\lambda_3 = \cdots = \lambda_N}_{\mu} > |\lambda_{N+1}|.$$

• Curvature near central point determined by third order expansion

$$\mathbf{x}^m \doteq \mathbf{q}_0 + \mathbf{\Psi}[\mathbf{q}_1; \mathbf{q}_2] + \mu^m \sum_{\ell=3}^N f_\ell \mathbf{q}_\ell.$$

・日・ ・ 四・ ・ 田・ ・ 田・

Curvature and the subsub-dominant eigenvalue

The principal curvatures

- converge to 0, if $\mu < \lambda^2$,
- are bounded, if $\mu = \lambda^2$,
- diverge, if $\mu > \lambda^2$.
- are in L^p for

$$p < \frac{2\ln\lambda}{2\ln\lambda - \ln\mu}.$$

 C^1 always implies $H^{2,2}$.

C^2 -conditions

• A subdivision schemes generates C^2 -surfaces if and only if

$$\mu = \lambda^2$$

and if the subsub-dominant eigenfunctions satisfy

 $f_3, \ldots, f_N \in \text{span}\{f_1^2, f_1f_2, f_2^2\}.$

• **Degree estimate:** If, on the regular part of the grid, the scheme generates polynomial patches of degree *d* joining *C^k*, then non-trivial curvature continuity is possible only if

$$d\geq 2k+2.$$

This rules out schemes generalizing uniform B-spline subdivision and box splines. The lowest order candidate is of bi-degree 6 with 4-fold knots.

Shape analysis

To achieve curvature continuity, convergence of the

- principal curvatures is not sufficient.
- principal directions is not necessary.
- Weingarten map is necessary and sufficient, but

8 / 22

• The Weingarten map *W* is a linear map in the tangent space *T***x**, defined by

 $\nabla \mathbf{n} = -W \nabla \mathbf{x}.$

- Its eigenvalues and eigenvectors are the principal curvatures and directions, respectively.
- With respect to basis $\mathbf{x}_u, \mathbf{x}_v$ of $T\mathbf{x}$,

$$D\mathbf{n} = -W D\mathbf{x} \Rightarrow -D\mathbf{n}D\mathbf{x}^{\mathrm{t}} = W D\mathbf{x}D\mathbf{x}^{\mathrm{t}} \Rightarrow W = H G^{-1},$$

where

$$D := \begin{bmatrix} \partial_u \\ \partial_v \end{bmatrix}, \quad G := D\mathbf{x} D\mathbf{x}^{\mathrm{t}}, \quad H := -D\mathbf{n} D\mathbf{x}^{\mathrm{t}}.$$

Problem: For spline surfaces, *D***x** and hence *W* is *discontinuous*.

Ulrich Reif

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Trick: Instead of $D\mathbf{n} = -WD\mathbf{x}$, consider the dual equation,

 $D\mathbf{n}^{\mathrm{t}} = -E D\mathbf{x}^{\mathrm{t}}.$

イロト イヨト イヨト イヨト

• *Trick:* Instead of $D\mathbf{n} = -WD\mathbf{x}$, consider the *extended* dual equation,

$$[D\mathbf{n}^{\mathrm{t}}, 0] = -E [D\mathbf{x}^{\mathrm{t}}, \mathbf{n}^{\mathrm{t}}].$$

• Trick: Instead of $D\mathbf{n} = -WD\mathbf{x}$, consider the extended dual equation, $[D\mathbf{n}^{t}, 0] = -E[D\mathbf{x}^{t}, \mathbf{n}^{t}].$

With

 $D\mathbf{x}^+ = D\mathbf{x}^{\mathrm{t}} G^{-1}$

denoting the pseudo-inverse of $D\mathbf{x}$,

$$E = -D\mathbf{x}^+ D\mathbf{n} = D\mathbf{x}^+ H (D\mathbf{x}^+)^{\mathrm{t}}$$

is a symmetric map acting on \mathbb{R}^3 . By duality,

$$E_{|T\mathbf{x}} = W$$
 and $E\mathbf{n}^{\mathrm{t}} = 0$.

• We call E the embedded Weingarten map of x.

10 / 22

イロト イポト イヨト イヨト

Properties:

- *E* is a second order geometric invariant.
- The principal directions are eigenvectors with respect to the principal curvatures.
- *E* refers to coordinates of the embedding space.
- Continuity of *E* is *necessary and sufficient* for **x** to be a *C*²-manifold, i.e., in the subdivision setup, the limit

21.05.10

11 / 22

$$E^{c} := \lim_{m \to \infty} E^{m}, \quad E^{m} : \Sigma_{0} \times \{1, \dots, n\} \to \mathbb{R}^{3 \times 3}$$

has to exist and to be constant.

Properties:

- *E* is a second order geometric invariant.
- The principal directions are eigenvectors with respect to the principal curvatures.
- *E* refers to coordinates of the embedding space.
- Continuity of *E* is *necessary and sufficient* for **x** to be a *C*²-manifold, i.e., in the subdivision setup, the limit

$$E^{c} := \lim_{m \to \infty} E^{m}, \quad E^{m} : \Sigma_{0} \times \{1, \dots, n\} \to \mathbb{R}^{3 \times 3}$$

has to exist and to be constant.

• The integrability conditions are simple,

$$\mathbf{n}_u E_v^+ = \mathbf{n}_v E_u^+ \quad \Rightarrow \quad D\mathbf{x} = D\mathbf{n} E^+.$$

11 / 22

The central surface

• For simplicity, let

$$\begin{bmatrix} \mathbf{q}_1 \\ \mathbf{q}_2 \end{bmatrix} = L \begin{bmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \end{bmatrix}.$$

• The third order asymptotic expansion of the rings is

$$\mathbf{x}^{m} \doteq \mathbf{q}_{0} + [\lambda^{m} \Psi L, \mu^{m} \varphi], \quad \varphi := \sum_{i=3}^{N} f_{i} \langle \mathbf{q}_{i}, \mathbf{n}^{c} \rangle.$$

• Definition: The central surface is a spatial ring defined by

(日) (同) (三) (三)

21.05.10

12 / 22

$$\tilde{\mathbf{x}}:=(\mathbf{\Psi} \mathbf{L}, \varphi)$$

Ulrich Reif

Asymptotic expansions

• With $J := D\Psi L$, the *first fundamental* form of \mathbf{x}^m is

$$G^m \doteq \lambda^{2m} G, \quad G := J J^T$$

 With G and H the fundamental forms of the central surface x, the second fundamental form of x^m is

$$H^{m}\doteq \mu^{m}\,H, \quad H:=\sqrt{rac{\det ilde{G}}{\det G}}\,\, ilde{H},$$

• The *embedded Weingarten map* of **x**^m is

$$E^{m} \doteq \varrho^{m} \begin{bmatrix} E & 0 \\ 0 & 0 \end{bmatrix}, \quad E := L^{\mathrm{t}} J^{-\mathrm{t}} H J^{-1} L, \quad \varrho := \frac{\mu}{\lambda^{2}}.$$

Asymptotic expansions

• The embedded Weingarten map of \mathbf{x}^m is

$$E^{m} \doteq \varrho^{m} \begin{bmatrix} E & 0 \\ 0 & 0 \end{bmatrix}, \quad E := L^{\mathrm{t}} J^{-\mathrm{t}} H J^{-1} L, \quad \varrho := \frac{\mu}{\lambda^{2}}.$$

• The Gausian curvature of **x**^m is

$$\kappa_{\rm G}^m \doteq \varrho^{2m} \det E.$$

• The mean curvature of **x**^m is

$$\kappa_{\mathrm{M}}^{m} \doteq \varrho^{m}$$
 trace E.

• The principal directions of \mathbf{x}^m are

$$\mathbf{R}^m \doteq [\mathbf{R}, \ 0], \quad \mathbf{R} \, E = K \mathbf{R}.$$

• • = • • = •

Consequences

- The deviation of *E* from a constant is a reliable indicator for the quality of a subdivision algorithm.
- An algorithm cannot generate *elliptic shape* unless

 $0 \in \mathcal{F}(\mu).$

• An algorithm cannot generate *hyperbolic shape* unless

 $1, n-1 \in \mathcal{F}(\mu).$

Optimal spectrum

$$\begin{array}{ll} \text{simple 1,} & \mathcal{F}(1) = \{0\} \\ \text{double } \lambda \approx 1/2, & \mathcal{F}(\lambda) = \{1, n-1\} \\ \text{triple } \mu = \lambda^2, & \mathcal{F}(\mu) = \{0, 1, n-1\} \end{array}$$

15 / 22

イロト イヨト イヨト イヨト

- TURBS (R.' 95)
- Freeform splines (Prautzsch '96)
- Guided subdivision (Peters, Karciauskas '06)

イロト イヨト イヨト イヨト

- Denote by C²_d(ℝⁿ) the space of all C²-rings in ℝⁿ composed of patches of coordinate degree d.
- A ring $\Psi \in C_3^2(\mathbb{R}^2)$ is called a *concentric tesselation map* with scale factor $\lambda \in (0, 1)$, if it is injective and regular, i.e., det $D\Psi \neq 0$, and if Ψ and $\lambda \Psi$ join C^2 when regarded as consecutive rings.
- The image of Ψ and its *extension* are denoted

$$\Omega := \Psi(\Sigma), \quad \Omega_e := \Omega \cup \lambda \Omega.$$

17 / 22

・ロト ・四ト ・ヨト ・ヨト

The *reparametrization operator* R is mapping rings $\mathbf{x}^m \in C_6^2(\mathbb{R}^n)$ to functions on $\Omega \subset \mathbb{R}^n$ by

 $R[\mathbf{x}^m]:\Omega\ni\boldsymbol{\xi}\mapsto\mathbf{x}^m(\boldsymbol{\Psi}^{-1}(\boldsymbol{\xi})).$

The extended reparametrization operator R_e maps a pair $\mathbf{x}^m, \mathbf{x}^{m+1} \in C_6^2(\mathbb{R}^n)$ of consecutive rings to a single function acting on Ω_e according to

$$R_e[\mathbf{x}^m, \mathbf{x}^{m+1}] : \Omega_e \ni \boldsymbol{\xi} \mapsto \begin{cases} R[\mathbf{x}^m](\boldsymbol{\xi}) & \text{if } \boldsymbol{\xi} \in \Omega \\ R[\mathbf{x}^{m+1}](\boldsymbol{\xi}/\lambda) & \text{if } \boldsymbol{\xi} \in \lambda\Omega \end{cases}.$$

• The subdivision matrix A has *quadratic precision*, if for consecutive rings $\mathbf{x}^m = B_6 \mathbf{Q}^m$, $\mathbf{x}^{m+1} = B_6 A \mathbf{Q}^m$,

 $R[\mathbf{x}^m] \in \mathbb{P}_2(\Omega)$ implies $R_e[\mathbf{x}^m, \mathbf{x}^{m+1}] \in \mathbb{P}_2(\Omega_e).$

• If Ψ has scale factor λ and A has quadratic precision, then there exist eigenvalues λ_i , eigenvectors v_i and eigenfunctions $f_i = B_6 v_i$ satisfying

$$\begin{split} \lambda_0 &= 1, \quad \lambda_1 = \lambda_2 = \lambda, \quad \lambda_3 = \lambda_4 = \lambda_5 = \lambda^2 \\ f_0 &= 1, \quad [f_1, f_2] = \Psi, \quad f_3 = f_1^2, \ f_4 = f_1 f_2, \ f_5 = f_2^2. \end{split}$$

Consequence: Let A be a subdivision matrix with quadratic precision and eigenvalues λ₀, λ₁,..., λ_ℓ, where λ₀,..., λ₅ are given above. If Ψ has scale factor λ and |λ_i| < λ² for all i > 5, then A defines a C²-subdivision algorithm.

イロト イポト イヨト イヨト

Compute $\mathbf{x}^{m+1} = S(\mathbf{x}^m)$ in four steps:

• Extension: Choose a linear extension operator E mapping the function $\mathbf{r} = R[\mathbf{x}^m]$ defined on Ω to the function $\mathbf{r}_e = E[\mathbf{r}]$ defined on Ω_e such that

$$\mathbf{r} \in \mathbb{P}_2 \quad \Rightarrow \quad \mathbf{r}_e \in \mathbb{P}_2.$$

• The subdivision matrix A corresponding to the scheme S = PTER is given by

GA = PTER[G].

The algorithm is C^2 , if

 $\lambda_i < \lambda^2, \quad i > 6.$

A can be precomputed once and for all.

18 / 22

イロト イヨト イヨト イヨト

- Linear, univariate subdivision well understood.
- Linear, multivariate subdivision well understood in the regular setting.
- C¹-schemes for arbitrary topology available.
- C^2 -schemes for arbitrary topology available, but not well established.
- Nonlinear schemes not well understood.
- Schemes for perfect shape sought.

19 / 22

Ulrich Reif

21.05.10

▲□▶ ▲圖▶ ▲園▶ ▲園▶

20 / 22

æ

Ulrich Reif

21.05.10 21 / 22

₹.

▲□▶ ▲圖▶ ▲園▶ ▲園▶

Ulrich Reif

21.05.10

▲ ● > < ● > < ● > < ● > < ●

22 / 22