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Assessment fo subdivision surfaces, today

Designer 1 (Nintendo):

Subdivision surfaces are sufficiently smooth, by far.

Designer 2 (Pixar):

Subdivision surfaces are sufficiently smooth, from afar.

Designer 3 (Mercedes):

Subdivision surfaces are far from sufficiently smooth.
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Setup

A subdivision surface x is the union of spline rings,

x =
⋃

m∈N0

xm.

Each spline ring is a linear combination of generating functions and
control points,

xm =
∑

i

gip
m
i = GPm.

The sequence of control points is obtained by repeated application of
the subdivision matrix,

Pm = AmP0.
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Setup

Eigenvalues

|λ0| ≥ |λ1| ≥ · · · ≥ |λL|,

Left and right eigenvectors

Av` = λ`v`, w`A = λ`w`,

Eigenfunctions and eigencoefficients

f` = Gv`, q` = w`P.

Eigen-expansion

xm =
∑
`

λmf`q`
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Generic assumptions

The sub-dominant eigenvalue is double

λ := λ1 = λ2 > |λ3|

The characteristic map is regular and injective,

ΨΨΨ := [f1, f2] = G [v1, v2], det DΨΨΨ 6= 0.

The subsub-dominant eigenvalue is denoted by µ,

1 > λ1 = λ2︸ ︷︷ ︸
λ

> λ3 = · · · = λN︸ ︷︷ ︸
µ

> |λN+1|.

Curvature near central point determined by third order expansion

xm .
= q0 + ΨΨΨ[q1; q2] + µm

N∑
`=3

f`q`.
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Curvature and the subsub-dominant eigenvalue

The principal curvatures

converge to 0, if µ < λ2,

are bounded, if µ = λ2,

diverge, if µ > λ2.

are in Lp for

p <
2 lnλ

2 lnλ− lnµ
.

C 1 always implies H2,2.
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C 2-conditions

A subdivision schemes generates C 2-surfaces if and only if

µ = λ2

and if the subsub-dominant eigenfunctions satisfy

f3, . . . , fN ∈ span{f 2
1 , f1f2, f 2

2 }.

Degree estimate: If, on the regular part of the grid, the scheme
generates polynomial patches of degree d joining C k , then non-trivial
curvature continuity is possible only if

d ≥ 2k + 2.

This rules out schemes generalizing uniform B-spline subdivision and
box splines. The lowest order candidate is of bi-degree 6 with 4-fold
knots.
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Shape analysis

To achieve curvature continuity, convergence of the

principal curvatures is not sufficient.

principal directions is not necessary.

Weingarten map is necessary and sufficient, but . . .
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The Weingarten map revisited

The Weingarten map W is a linear map in the tangent space Tx,
defined by

∇n = −W∇x.

Its eigenvalues and eigenvectors are the principal curvatures and
directions, respectively.

With respect to basis xu, xv of Tx,

Dn = −W Dx ⇒ −DnDxt = W DxDxt ⇒ W = H G−1,

where

D :=

[
∂u

∂v

]
, G := Dx Dxt, H := −Dn Dxt.

Problem: For spline surfaces, Dx and hence W is discontinuous.
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The Weingarten map revisited

Trick: Instead of Dn = −WDx, consider the dual equation,

Dnt = −E Dxt.
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The Weingarten map revisited

Trick: Instead of Dn = −WDx, consider the extended dual equation,

[Dnt, 0] = −E [Dxt, nt].

With

Dx+ = Dxt G−1

denoting the pseudo-inverse of Dx,

E = −Dx+ Dn = Dx+ H (Dx+)t

is a symmetric map acting on R3. By duality,

E|Tx = W and Ent = 0.

We call E the embedded Weingarten map of x.
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The Weingarten map revisited

Properties:

E is a second order geometric invariant.

The principal directions are eigenvectors with respect to the principal
curvatures.

E refers to coordinates of the embedding space.

Continuity of E is necessary and sufficient for x to be a C 2-manifold,
i.e., in the subdivision setup, the limit

E c := lim
m→∞

Em, Em : Σ0 × {1, . . . , n} → R3×3

has to exist and to be constant.

The integrability conditions are simple,

nuE +
v = nv E +

u ⇒ Dx = Dn E +.
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The central surface

For simplicity, let[
q1

q2

]
= L

[
e1

e2

]
.

The third order asymptotic expansion of the rings is

xm .
= q0 + [λmΨΨΨL, µmϕ] , ϕ :=

N∑
i=3

fi 〈qi ,n
c〉.

Definition: The central surface is a spatial ring defined by

x̃ := (ΨΨΨL, ϕ).
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Asymptotic expansions

With J := DΨΨΨL, the first fundamental form of xm is

Gm .
= λ2m G , G := J JT .

With G̃ and H̃ the fundamental forms of the central surface x̃, the
second fundamental form of xm is

Hm .
= µm H, H :=

√
det G̃

det G
H̃, .

The embedded Weingarten map of xm is

Em .
= %m

[
E 0
0 0

]
, E := Lt J−t H J−1L, % :=

µ

λ2
.
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Asymptotic expansions

The embedded Weingarten map of xm is

Em .
= %m

[
E 0
0 0

]
, E := Lt J−t H J−1L, % :=

µ

λ2
.

The Gausian curvature of xm is

κm
G
.

= %2m det E .

The mean curvature of xm is

κm
M
.

= %m trace E .

The principal directions of xm are

Rm .
= [R, 0], R E = KR.

Ulrich Reif 21.05.10 14 / 22



Consequences

The deviation of E from a constant is a reliable indicator for the
quality of a subdivision algorithm.

An algorithm cannot generate elliptic shape unless

0 ∈ F(µ).

An algorithm cannot generate hyperbolic shape unless

1, n − 1 ∈ F(µ).

Optimal spectrum

simple 1, F(1) = {0}
double λ ≈ 1/2, F(λ) = {1, n − 1}
triple µ = λ2, F(µ) = {0, 1, n − 1}
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C 2-schemes

TURBS (R.’ 95)

Freeform splines (Prautzsch ’96)

Guided subdivision (Peters, Karciauskas ’06)
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General framework for C 2-subdivision

Denote by C 2
d (Rn) the space of all C 2-rings in Rn composed of

patches of coordinate degree d .

A ring ΨΨΨ ∈ C 2
3 (R2) is called a concentric tesselation map with scale

factor λ ∈ (0, 1), if it is injective and regular, i.e., det DΨΨΨ 6= 0, and if
ΨΨΨ and λΨΨΨ join C 2 when regarded as consecutive rings.

The image of ΨΨΨ and its extension are denoted

Ω := ΨΨΨ(Σ), Ωe := Ω ∪ λΩ.
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General framework for C 2-subdivision

The reparametrization operator R is mapping rings xm ∈ C 2
6 (Rn) to

functions on Ω ⊂ Rn by

R[xm] : Ω 3 ξξξ 7→ xm(ΨΨΨ−1(ξξξ)).

× {1,...,n} 

IRn 

xm R[xm] 

Ψ−1 
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General framework for C 2-subdivision

The extended reparametrization operator Re maps a pair
xm, xm+1 ∈ C 2

6 (Rn) of consecutive rings to a single function acting on Ωe

according to

Re [xm, xm+1] : Ωe 3 ξξξ 7→

{
R[xm](ξξξ) if ξξξ ∈ Ω

R[xm+1](ξξξ/λ) if ξξξ ∈ λΩ
.

× {1,...,n} 

IRn 

xm, xm+1 R
e
[xm, xm+1] 

Ψ−1, Ψ−1/λ 
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General framework for C 2-subdivision

The subdivision matrix A has quadratic precision, if for consecutive
rings xm = B6Qm, xm+1 = B6AQm,

R[xm] ∈ P2(Ω) implies Re [xm, xm+1] ∈ P2(Ωe).

If ΨΨΨ has scale factor λ and A has quadratic precision, then there exist
eigenvalues λi , eigenvectors vi and eigenfunctions fi = B6vi satisfying

λ0 = 1, λ1 = λ2 = λ, λ3 = λ4 = λ5 = λ2

f0 = 1, [f1, f2] = ΨΨΨ, f3 = f 2
1 , f4 = f1f2, f5 = f 2

2 .

Consequence: Let A be a subdivision matrix with quadratic precision
and eigenvalues λ0, λ1, . . . , λ¯̀, where λ0, . . . , λ5 are given above. If ΨΨΨ
has scale factor λ and |λi | < λ2 for all i > 5, then A defines a
C 2-subdivision algorithm.
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General framework for C 2-subdivision

Compute xm+1 = S(xm) in four steps:

Reparam 

Extension 

Turn−back 

Projection S = PTER 
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General framework for C 2-subdivision

Extension: Choose a linear extension operator E mapping the
function r = R[xm] defined on Ω to the function re = E [r] defined on
Ωe such that

r ∈ P2 ⇒ re ∈ P2.

The subdivision matrix A corresponding to the scheme S = PTER is
given by

GA = PTER[G ].

The algorithm is C 2, if

λi < λ2, i > 6.

A can be precomputed once and for all.
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Summary

Linear, univariate subdivision well understood.

Linear, multivariate subdivision well understood in the regular setting.

C 1-schemes for arbitrary topology available.

C 2-schemes for arbitrary topology available, but not well established.

Nonlinear schemes not well understood.

Schemes for perfect shape sought.
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