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Assessment fo subdivision surfaces, today

Designer 1 (Nintendo):
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Assessment fo subdivision surfaces, today

Designer 1 (Nintendo):

‘Subdivision surfaces are sufficiently smooth, by far. ‘

Designer 2 (Pixar):

‘Subdivision surfaces are sufficiently smooth, from afar. ‘

Designer 3 (Mercedes):

’Subdivision surfaces are far from sufficiently smooth. ‘
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Setup

@ A subdivision surface x is the union of spline rings,
X = U x™.
meNy

@ Each spline ring is a linear combination of generating functions and
control points,

x" = Zg;p?" = GP".
i

@ The sequence of control points is obtained by repeated application of
the subdivision matrix,

P" = A"PO.
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Setup

Eigenvalues

Ao > [A1] =+ > ALl

Left and right eigenvectors

Avp = Apve, WA = Awy,

Eigenfunctions and eigencoefficients

fo = Gve, qe= wP.

Eigen-expansion

x" = Z A" frqq
7
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Generic assumptions

@ The sub-dominant eigenvalue is double
A= A1 = A2 > | A3

@ The characteristic map is regular and injective,
V= [fi, L] = G[vi, ], detDW # 0.

@ The subsub-dominant eigenvalue is denoted by p,

1>)\1:)\2>)\3:"':)\N>|/\N+1"
—— ~— - —
A M

@ Curvature near central point determined by third order expansion

N

x™ = qo + W[ay; a2] + 1> fiar.
/=3
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Curvature and the subsub-dominant eigenvalue

The principal curvatures
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C2-conditions

@ A subdivision schemes generates C?-surfaces if and only if
p= A
and if the subsub-dominant eigenfunctions satisfy
fy...,fn € span{fZ, fifa, 7 }.

o Degree estimate: If, on the regular part of the grid, the scheme
generates polynomial patches of degree d joining C*, then non-trivial
curvature continuity is possible only if

d>2k+2.

This rules out schemes generalizing uniform B-spline subdivision and
box splines. The lowest order candidate is of bi-degree 6 with 4—fo|d
knots.
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Shape analysis

To achieve curvature continuity, convergence of the
@ principal curvatures is not sufficient.
@ principal directions is not necessary.

@ Weingarten map is necessary and sufficient, but ...
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The Weingarten map revisited

@ The Weingarten map W is a linear map in the tangent space T,
defined by

Vn = -WVx.

@ lts eigenvalues and eigenvectors are the principal curvatures and
directions, respectively.

@ With respect to basis x,, x, of Tx,

Dn=-WDx = —DnDx'=WDxDx"* = W=HG!,

D := [8“} , G:=DxDx'", H:=—DnDx".

Problem: For spline surfaces, Dx and hence W is discontinuous.
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The Weingarten map revisited

o Trick: Instead of Dn = —WDx, consider the dual equation,

Dn' = —E Dx".
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The Weingarten map revisited

@ Trick: Instead of Dn = —WDx, consider the extended dual equation,
[Dn®, 0] = —E [Dx", n'].
e With
Dxt = Dx* G}
denoting the pseudo-inverse of Dx,
E = —Dx" Dn = Dx* H (Dx*)*
is a symmetric map acting on R3. By duality,

Ei7x =W and En' =0.

o We call E the embedded Weingarten map of x.
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The Weingarten map revisited

Properties:
@ E is a second order geometric invariant.

@ The principal directions are eigenvectors with respect to the principal
curvatures.

E refers to coordinates of the embedding space.

Continuity of E is necessary and sufficient for x to be a C?-manifold,
i.e., in the subdivision setup, the limit

EC:= lim E™, E™:¥yx{1,...,n} — R¥3

m—0oo

has to exist and to be constant.
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The Weingarten map revisited

Properties:
@ E is a second order geometric invariant.

@ The principal directions are eigenvectors with respect to the principal
curvatures.

E refers to coordinates of the embedding space.

Continuity of E is necessary and sufficient for x to be a C?-manifold,
i.e., in the subdivision setup, the limit

EC:= lim E™, E™:¥yx{1,...,n} — R¥3

m—0oo

has to exist and to be constant.

The integrability conditions are simple,

n,Ef=nEf = Dx=DnET.
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The central surface

@ For simplicity, let

o =)
q2 e
@ The third order asymptotic expansion of the rings is

N
X" = qo + NTWL uTe] . @i=) filq;,nc).
i=3

@ Definition: The central surface is a spatial ring defined by

x:= (VL p).
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Asymptotic expansions

e With J := DWL, the first fundamental form of x™ is
Gm=\"G, G:=JJT.

e With G and H the fundamental forms of the central surface ¥, the
second fundamental form of x™ is

det G -
m " H:= H
H W H, \/ detG

@ The embedded Weingarten map of x™ is

Em = om [g g] E=LtJtHJ UL, o=F.
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Asymptotic expansions

@ The embedded Weingarten map of x™ is

Em = om ['g 8] L E =LY HIU, o= %
@ The Gausian curvature of x™ is
KO = 0°™ det E.
@ The mean curvature of x™ is
ry = o™ trace E.
@ The principal directions of x™ are
R™ =[R, 0], RE = KR.
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Consequences

The deviation of E from a constant is a reliable indicator for the
quality of a subdivision algorithm.

@ An algorithm cannot generate elliptic shape unless

0 e F(u).
@ An algorithm cannot generate hyperbolic shape unless

1,n—1¢€ F(u).
@ Optimal spectrum

simple 1, F(1) = {0}

double A ~ 1/2, FA)={1,n—1}

triple 1 = A2, F(n)=1{0,1,n—1}
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C2-schemes

o TURBS (R.’ 95)
@ Freeform splines (Prautzsch '96)

o Guided subdivision (Peters, Karciauskas '06)
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General framework for C%-subdivision

o Denote by C3(IR") the space of all C?-rings in R” composed of
patches of coordinate degree d.

o Aring W € C3(R?) is called a concentric tesselation map with scale
factor A € (0,1), if it is injective and regular, i.e., det DW # 0, and if
W and AW join C? when regarded as consecutive rings.

@ The image of W and its extension are denoted

Q:=V(X), Q. :=QUI
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General framework for C%-subdivision

The reparametrization operator R is mapping rings x™ € C62(R”) to
functions on Q C R" by

R[x™ : Q3 & — x™(WL(£)).

IR"
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General framework for C?-subdivision
The extended reparametrization operator R, maps a pair

x™ x™+1 € C2(R") of consecutive rings to a single function acting on Q.
according to

m m—+17 . — R[Xm](é) IffeQ
Rel™ X" : Qe 5 € RIx™H](£/N) if€€AQ’

m _m+1
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General framework for C%-subdivision

@ The subdivision matrix A has quadratic precision, if for consecutive
rings x™ = BsQ™, x™1 = BsAQ™,

R[x™ € Po(Q) implies Re[x™,x™] € Po(Q).

@ If W has scale factor A and A has quadratic precision, then there exist
eigenvalues \;, eigenvectors v; and eigenfunctions f; = Bgv; satisfying

=1 M=X=X d=XM=Xl=2\
f0:1, [flafé]:wy f3:le_27 f4:ﬁ.f27 f:r):f22.

o Consequence: Let A be a subdivision matrix with quadratic precision
and eigenvalues Ao, A1, ..., A7, where Xg, ..., A5 are given above. If W
has scale factor A and |\;| < A2 for all i > 5, then A defines a
C?-subdivision algorithm.
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General framework for C%-subdivision

Compute x™1 = S(x™) in four steps:

Reparam
-
Projection S=PTER Extension
4
T
e,
O
(AKX
KRLEE
TR
LSRR
Turn-back RsSeS;:
&
O
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General framework for C%-subdivision

o Extension: Choose a linear extension operator E mapping the
function r = R[x"] defined on Q to the function r. = E[r] defined on
Q. such that

reclPr, = r.€Po.

@ The subdivision matrix A corresponding to the scheme S = PTER is
given by

GA = PTER|G].
The algorithm is Cc?if
Ai <X, i>6.

A can be precomputed once and for all.
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Summary

Linear, univariate subdivision well understood.

Linear, multivariate subdivision well understood in the regular setting.
Cl-schemes for arbitrary topology available.

C?-schemes for arbitrary topology available, but not well established.
Nonlinear schemes not well understood.

Schemes for perfect shape sought.
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