Lecture VII

Shape analysis and higher regularity of bivariate subdivision schemes

Ulrich Reif
Technische Universität Darmstadt

Bertinoro, May 21, 2010

Assessment fo subdivision surfaces, today

Designer 1 (Nintendo):
Subdivision surfaces are sufficiently smooth, by far.

Assessment fo subdivision surfaces, today

Designer 1 (Nintendo):
Subdivision surfaces are sufficiently smooth, by far.
Designer 2 (Pixar):
Subdivision surfaces are sufficiently smooth, from afar.

Assessment fo subdivision surfaces, today

Designer 1 (Nintendo):
Subdivision surfaces are sufficiently smooth, by far.
Designer 2 (Pixar):
Subdivision surfaces are sufficiently smooth, from afar.
Designer 3 (Mercedes):
Subdivision surfaces are far from sufficiently smooth.

Setup

- A subdivision surface \mathbf{x} is the union of spline rings,

$$
\mathbf{x}=\bigcup_{m \in \mathbb{N}_{0}} \mathbf{x}^{m}
$$

- Each spline ring is a linear combination of generating functions and control points,

$$
\mathbf{x}^{m}=\sum_{i} g_{i} \mathbf{p}_{i}^{m}=G \mathbf{P}^{m}
$$

- The sequence of control points is obtained by repeated application of the subdivision matrix,

$$
\mathbf{P}^{m}=A^{m} \mathbf{P}^{0}
$$

Setup

- Eigenvalues

$$
\left|\lambda_{0}\right| \geq\left|\lambda_{1}\right| \geq \cdots \geq\left|\lambda_{L}\right|
$$

- Left and right eigenvectors

$$
A v_{\ell}=\lambda_{\ell} v_{\ell}, \quad w_{\ell} A=\lambda_{\ell} w_{\ell}
$$

- Eigenfunctions and eigencoefficients

$$
f_{\ell}=G v_{\ell}, \quad \mathbf{q}_{\ell}=w_{\ell} \mathbf{P}
$$

- Eigen-expansion

$$
\mathbf{x}^{m}=\sum_{\ell} \lambda^{m} f_{\ell} \mathbf{q}_{\ell}
$$

Generic assumptions

- The sub-dominant eigenvalue is double

$$
\lambda:=\lambda_{1}=\lambda_{2}>\left|\lambda_{3}\right|
$$

- The characteristic map is regular and injective,

$$
\boldsymbol{\Psi}:=\left[f_{1}, f_{2}\right]=G\left[v_{1}, v_{2}\right], \quad \operatorname{det} D \boldsymbol{\Psi} \neq 0
$$

- The subsub-dominant eigenvalue is denoted by μ,

$$
1>\underbrace{\lambda_{1}=\lambda_{2}}_{\lambda}>\underbrace{\lambda_{3}=\cdots=\lambda_{N}}_{\mu}>\left|\lambda_{N+1}\right| .
$$

- Curvature near central point determined by third order expansion

$$
\mathbf{x}^{m} \doteq \mathbf{q}_{0}+\boldsymbol{\Psi}\left[\mathbf{q}_{1} ; \mathbf{q}_{2}\right]+\mu^{m} \sum_{\ell=3}^{N} f_{\ell} \mathbf{q}_{\ell}
$$

Curvature and the subsub-dominant eigenvalue

The principal curvatures

- converge to 0 , if $\mu<\lambda^{2}$,
- are bounded, if $\mu=\lambda^{2}$,
- diverge, if $\mu>\lambda^{2}$.
- are in L^{p} for

$$
p<\frac{2 \ln \lambda}{2 \ln \lambda-\ln \mu}
$$

C^{1} always implies $H^{2,2}$.

C^{2}-conditions

- A subdivision schemes generates C^{2}-surfaces if and only if

$$
\mu=\lambda^{2}
$$

and if the subsub-dominant eigenfunctions satisfy

$$
f_{3}, \ldots, f_{N} \in \operatorname{span}\left\{f_{1}^{2}, f_{1} f_{2}, f_{2}^{2}\right\}
$$

- Degree estimate: If, on the regular part of the grid, the scheme generates polynomial patches of degree d joining C^{k}, then non-trivial curvature continuity is possible only if

$$
d \geq 2 k+2
$$

This rules out schemes generalizing uniform B-spline subdivision and box splines. The lowest order candidate is of bi-degree 6 with 4 -fold knots.

Shape analysis

To achieve curvature continuity, convergence of the

- principal curvatures is not sufficient.
- principal directions is not necessary.
- Weingarten map is necessary and sufficient, but ...

The Weingarten map revisited

- The Weingarten map W is a linear map in the tangent space $T \mathbf{x}$, defined by

$$
\nabla \mathbf{n}=-W \nabla \mathbf{x}
$$

- Its eigenvalues and eigenvectors are the principal curvatures and directions, respectively.
- With respect to basis $\mathbf{x}_{u}, \mathbf{x}_{v}$ of $T \mathbf{x}$,

$$
D \mathbf{n}=-W D \mathbf{x} \Rightarrow-D \mathbf{n} D \mathbf{x}^{\mathrm{t}}=W D \mathbf{x} D \mathbf{x}^{\mathrm{t}} \Rightarrow W=H G^{-1}
$$

where

$$
D:=\left[\begin{array}{c}
\partial_{u} \\
\partial_{v}
\end{array}\right], \quad G:=D \mathbf{x} D \mathbf{x}^{\mathrm{t}}, \quad H:=-D \mathbf{n} D \mathbf{x}^{\mathrm{t}} .
$$

Problem: For spline surfaces, $D \mathbf{x}$ and hence W is discontinuous.

The Weingarten map revisited

- Trick: Instead of $D \mathbf{n}=-W D \mathbf{x}$, consider the dual equation,

$$
D \mathbf{n}^{\mathrm{t}}=-E D \mathbf{x}^{\mathrm{t}}
$$

The Weingarten map revisited

- Trick: Instead of $D \mathbf{n}=-W D \mathbf{x}$, consider the extended dual equation,

$$
\left[D \mathbf{n}^{\mathrm{t}}, 0\right]=-E\left[D \mathbf{x}^{\mathrm{t}}, \mathbf{n}^{\mathrm{t}}\right] .
$$

The Weingarten map revisited

- Trick: Instead of $D \mathbf{n}=-W D \mathbf{x}$, consider the extended dual equation,

$$
\left[D \mathbf{n}^{\mathrm{t}}, 0\right]=-E\left[D \mathbf{x}^{\mathrm{t}}, \mathbf{n}^{\mathrm{t}}\right] .
$$

- With

$$
D \mathbf{x}^{+}=D \mathbf{x}^{\mathrm{t}} G^{-1}
$$

denoting the pseudo-inverse of $D \mathbf{x}$,

$$
E=-D \mathbf{x}^{+} D \mathbf{n}=D \mathbf{x}^{+} H\left(D \mathbf{x}^{+}\right)^{\mathrm{t}}
$$

is a symmetric map acting on \mathbb{R}^{3}. By duality,

$$
E_{\mid T \mathbf{x}}=W \quad \text { and } \quad E \mathbf{n}^{\mathrm{t}}=0
$$

- We call E the embedded Weingarten map of \mathbf{x}.

The Weingarten map revisited

Properties:

- E is a second order geometric invariant.
- The principal directions are eigenvectors with respect to the principal curvatures.
- E refers to coordinates of the embedding space.
- Continuity of E is necessary and sufficient for \mathbf{x} to be a C^{2}-manifold, i.e., in the subdivision setup, the limit

$$
E^{c}:=\lim _{m \rightarrow \infty} E^{m}, \quad E^{m}: \Sigma_{0} \times\{1, \ldots, n\} \rightarrow \mathbb{R}^{3 \times 3}
$$

has to exist and to be constant.

The Weingarten map revisited

Properties:

- E is a second order geometric invariant.
- The principal directions are eigenvectors with respect to the principal curvatures.
- E refers to coordinates of the embedding space.
- Continuity of E is necessary and sufficient for \mathbf{x} to be a C^{2}-manifold, i.e., in the subdivision setup, the limit

$$
E^{c}:=\lim _{m \rightarrow \infty} E^{m}, \quad E^{m}: \Sigma_{0} \times\{1, \ldots, n\} \rightarrow \mathbb{R}^{3 \times 3}
$$

has to exist and to be constant.

- The integrability conditions are simple,

$$
\mathbf{n}_{u} E_{v}^{+}=\mathbf{n}_{v} E_{u}^{+} \quad \Rightarrow \quad D \mathbf{x}=D \mathbf{n} E^{+}
$$

The central surface

- For simplicity, let

$$
\left[\begin{array}{l}
\mathbf{q}_{1} \\
\mathbf{q}_{2}
\end{array}\right]=L\left[\begin{array}{l}
\mathbf{e}_{1} \\
\mathbf{e}_{2}
\end{array}\right]
$$

- The third order asymptotic expansion of the rings is

$$
\mathbf{x}^{m} \doteq \mathbf{q}_{0}+\left[\lambda^{m} \boldsymbol{\Psi} L, \mu^{m} \varphi\right], \quad \varphi:=\sum_{i=3}^{N} f_{i}\left\langle\mathbf{q}_{i}, \mathbf{n}^{c}\right\rangle
$$

- Definition: The central surface is a spatial ring defined by

$$
\tilde{\mathbf{x}}:=(\boldsymbol{\Psi} L, \varphi) .
$$

Asymptotic expansions

- With $J:=D \boldsymbol{\Psi} L$, the first fundamental form of \mathbf{x}^{m} is

$$
G^{m} \doteq \lambda^{2 m} G, \quad G:=J J^{T} .
$$

- With \tilde{G} and \tilde{H} the fundamental forms of the central surface $\tilde{\mathbf{x}}$, the second fundamental form of \mathbf{x}^{m} is

$$
H^{m} \doteq \mu^{m} H, \quad H:=\sqrt{\frac{\operatorname{det} \tilde{G}}{\operatorname{det} G}} \tilde{H}
$$

- The embedded Weingarten map of \mathbf{x}^{m} is

$$
E^{m} \doteq \varrho^{m}\left[\begin{array}{ll}
E & 0 \\
0 & 0
\end{array}\right], \quad E:=L^{\mathrm{t}} J^{-\mathrm{t}} H J^{-1} L, \quad \varrho:=\frac{\mu}{\lambda^{2}}
$$

Asymptotic expansions

- The embedded Weingarten map of \mathbf{x}^{m} is

$$
E^{m} \doteq \varrho^{m}\left[\begin{array}{ll}
E & 0 \\
0 & 0
\end{array}\right], \quad E:=L^{\mathrm{t}} J^{-\mathrm{t}} H J^{-1} L, \quad \varrho:=\frac{\mu}{\lambda^{2}}
$$

- The Gausian curvature of \mathbf{x}^{m} is

$$
\kappa_{\mathrm{G}}^{m} \doteq \varrho^{2 m} \operatorname{det} E .
$$

- The mean curvature of \mathbf{x}^{m} is

$$
\kappa_{\mathrm{M}}^{m} \doteq \varrho^{m} \text { trace } E
$$

- The principal directions of \mathbf{x}^{m} are

$$
\mathbf{R}^{m} \doteq[\mathbf{R}, 0], \quad \mathbf{R} E=K \mathbf{R}
$$

Consequences

- The deviation of E from a constant is a reliable indicator for the quality of a subdivision algorithm.
- An algorithm cannot generate elliptic shape unless

$$
0 \in \mathcal{F}(\mu)
$$

- An algorithm cannot generate hyperbolic shape unless

$$
1, n-1 \in \mathcal{F}(\mu)
$$

- Optimal spectrum

$$
\begin{array}{ll}
\text { simple } 1, & \mathcal{F}(1)=\{0\} \\
\text { double } \lambda \approx 1 / 2, & \mathcal{F}(\lambda)=\{1, n-1\} \\
\text { triple } \mu=\lambda^{2}, & \mathcal{F}(\mu)=\{0,1, n-1\}
\end{array}
$$

C^{2}-schemes

- TURBS (R.' 95)
- Freeform splines (Prautzsch '96)
- Guided subdivision (Peters, Karciauskas '06)

General framework for C^{2}-subdivision

- Denote by $C_{d}^{2}\left(\mathbb{R}^{n}\right)$ the space of all C^{2}-rings in \mathbb{R}^{n} composed of patches of coordinate degree d.
- A ring $\boldsymbol{\Psi} \in C_{3}^{2}\left(\mathbb{R}^{2}\right)$ is called a concentric tesselation map with scale factor $\lambda \in(0,1)$, if it is injective and regular, i.e., $\operatorname{det} D \boldsymbol{\Psi} \neq 0$, and if $\boldsymbol{\Psi}$ and $\lambda \boldsymbol{\Psi}$ join C^{2} when regarded as consecutive rings.
- The image of $\boldsymbol{\Psi}$ and its extension are denoted

$$
\Omega:=\boldsymbol{\Psi}(\Sigma), \quad \Omega_{e}:=\Omega \cup \lambda \Omega
$$

General framework for C^{2}-subdivision

The reparametrization operator R is mapping rings $\mathrm{x}^{m} \in C_{6}^{2}\left(\mathbb{R}^{n}\right)$ to functions on $\Omega \subset \mathbb{R}^{n}$ by

$$
R\left[\mathbf{x}^{m}\right]: \Omega \ni \boldsymbol{\xi} \mapsto \mathbf{x}^{m}\left(\boldsymbol{\Psi}^{-1}(\boldsymbol{\xi})\right) .
$$

General framework for C^{2}-subdivision

The extended reparametrization operator R_{e} maps a pair $\mathbf{x}^{m}, \mathbf{x}^{m+1} \in C_{6}^{2}\left(\mathbb{R}^{n}\right)$ of consecutive rings to a single function acting on Ω_{e} according to

$$
R_{e}\left[\mathbf{x}^{m}, \mathbf{x}^{m+1}\right]: \Omega_{e} \ni \boldsymbol{\xi} \mapsto\left\{\begin{array}{ll}
R\left[\mathbf{x}^{m}\right](\xi) & \text { if } \boldsymbol{\xi} \in \Omega \\
R\left[\mathbf{x}^{m+1}\right](\xi / \lambda) & \text { if } \boldsymbol{\xi} \in \lambda \Omega
\end{array} .\right.
$$

General framework for C^{2}-subdivision

- The subdivision matrix A has quadratic precision, if for consecutive rings $\mathbf{x}^{m}=B_{6} \mathbf{Q}^{m}, \mathbf{x}^{m+1}=B_{6} A \mathbf{Q}^{m}$,

$$
R\left[\mathrm{x}^{m}\right] \in \mathbb{P}_{2}(\Omega) \quad \text { implies } \quad R_{e}\left[\mathbf{x}^{m}, \mathrm{x}^{m+1}\right] \in \mathbb{P}_{2}\left(\Omega_{e}\right)
$$

- If $\boldsymbol{\Psi}$ has scale factor λ and A has quadratic precision, then there exist eigenvalues λ_{i}, eigenvectors v_{i} and eigenfunctions $f_{i}=B_{6} v_{i}$ satisfying

$$
\begin{aligned}
& \lambda_{0}=1, \quad \lambda_{1}=\lambda_{2}=\lambda, \quad \lambda_{3}=\lambda_{4}=\lambda_{5}=\lambda^{2} \\
& f_{0}=1, \quad\left[f_{1}, f_{2}\right]=\boldsymbol{\Psi}, \quad f_{3}=f_{1}^{2}, f_{4}=f_{1} f_{2}, f_{5}=f_{2}^{2}
\end{aligned}
$$

- Consequence: Let A be a subdivision matrix with quadratic precision and eigenvalues $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{\bar{\ell}}$, where $\lambda_{0}, \ldots, \lambda_{5}$ are given above. If $\boldsymbol{\Psi}$ has scale factor λ and $\left|\lambda_{i}\right|<\lambda^{2}$ for all $i>5$, then A defines a C^{2}-subdivision algorithm.

General framework for C^{2}-subdivision

Compute $\mathbf{x}^{m+1}=S\left(\mathbf{x}^{m}\right)$ in four steps:

General framework for C^{2}-subdivision

- Extension: Choose a linear extension operator E mapping the function $\mathbf{r}=R\left[\mathbf{x}^{m}\right]$ defined on Ω to the function $\mathbf{r}_{e}=E[\mathbf{r}]$ defined on Ω_{e} such that

$$
\mathbf{r} \in \mathbb{P}_{2} \quad \Rightarrow \quad \mathbf{r}_{e} \in \mathbb{P}_{2}
$$

- The subdivision matrix A corresponding to the scheme $S=P T E R$ is given by

$$
G A=P T E R[G]
$$

The algorithm is C^{2}, if

$$
\lambda_{i}<\lambda^{2}, \quad i>6
$$

A can be precomputed once and for all.

Summary

- Linear, univariate subdivision well understood.
- Linear, multivariate subdivision well understood in the regular setting.
- C^{1}-schemes for arbitrary topology available.
- C^{2}-schemes for arbitrary topology available, but not well established.
- Nonlinear schemes not well understood.
- Schemes for perfect shape sought.

