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Setup

@ In the vicinity of an extraordinary vertex of valence n, a subdivision
surface x can be written as the union of rings x,

X = U x™, x™:Yox{1,...,n} — R3
meNy
@ The space of rings x™ is spanned by a common generating system

G:[g()agla"'vg/]a Zglz]-
i

@ The ring x™ is determined by control points pi" € R3,
x™ = Zg,-p}" =GP™.

@ The sequence of control points is obtained by repeated application of
the subdivision matrix A,

PM — AmPO,

where the rows of A sum up to 1.
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Setup

LI

x™ = GA"P
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Eigendecomposition

@ The eigenvalues and eigenvectors of A are
Avp = Xvg, Ao > A1 > Ap- .

@ The corresponding eigenfunctions are
fr = Gy

o Decomposing the initial data P® = 3", v,q, yields
x" = Z GA™vpqp = ZA}" frq, = FD™Q.
¢ ¢

o If the trivial eigenvalue A\g = 1 is dominant, i.e. \g =1 > |\1], then
the rings x™ form a continuous subdivision surface with central point

x¢ = lim x™ = qq.
m—o0
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Subdominant eigenvalue and characteristic map

o Typically, for symmetric subdivision schemes, the subdominant
eigenvalue is double and real,

1>XA=A1 =X > pi= A3

@ The second order expansion of the sequence of rings is
x™ = qo + A"(fa1 + Hap) + O(u™).

@ The characteristic map of the subdivision scheme is the planar ring
V= [f, k] = G[v, va].

@ The properties of the characteristic map are crucial for the regularity
of the subdivision surface in a vicinity of an extraordinary point.
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The characteristic map
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The characteristic map
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Normal continuity

@ Sequence of rings
x" =qo + A"V¥[qi; g2] + O(p™).
@ Sequence of partial derivatives

Dx™ =[x, x'] = A™ DV [q1: gz] + O(u™).

urv
@ Sequence of normals

m_ X xXxy Wilar; a2 x Wy[a; gz2] +o(1)
Ixg < x| [Wulai; az2] x Wy[a1; g2] + o(1)]]
det DW(q1 x q2) + o(1)

= |[det D¥(qy x q2) + o(1)]|”

Ulrich Reif 20.05.10 8/21



Normal continuity

@ The sequence of normals

m det DW(ql X QQ) + O(].)

|l det DW¥(q1 x q2) + o(1)]|

converges to the constant limit

. . X
n°:= lim n™ = sign(det DW) 1 x 92
m—co a1 % a2||
if
» q; and q; are linearly independent
> the characteristic map is regular, i.e.,

det DW £ 0.

@ The sequence of normals does not converge if det DW changes sign.
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Normal continuity vs. regularity

Caution: Continuity of the normal vector does not imply Cl-regularity in
the sense of manifolds.

1 "’1’2’{;’5’/
O / I

x(u,v) = [u? — v2, uv, 17
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Main theorem

Theorem (C!-subdivision schemes)

A subdivision scheme with a double subdominant eigenvalue
o generates C'-limit surfaces for almost all initial data if
WV s regular and
WV s injective.
@ does not generate C'-limit surfaces for almost all initial data if

det DW changes sign or
W js not injective on the interior of its domain.
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A necessary condition

@ Discrete Fourier transform

Av A1 - A Ao O - 0

A1 Ao -+ A R 0 A .- 0

A= ) ] i = A= ) )
An-1 Ap2 - Ao 0 0 - A,

@ The Fourier index of the eigenvalue ); is defined by
F(N) = {k € Zn: \i is EV of A}
@ The characteristic map is not injective unless

F(AN) =11, n—-1}.

Proof based on the concept of winding number.
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A necessary condition
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A necessary condition
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A sufficient condition

Consider the first segment
WO = [, £)]: ¥o — R?

of the characteristic map. If
o,W° >0,

then the characteristic map is regular
and injective.
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A necessary and sufficient condition

Let W be regular. Then W is
injective if and only if
e F(A\)={1,n—1} and
@ the red lines do not
intersect.
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The Catmull-Clark algorithm
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The Catmull-Clark algorithm

Catmull and Clark suggest:
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The Catmull-Clark algorithm

@ For any reasonable choice of special weights, the spectrum of A is
appropriate,
)\0:1>)\1:>\2>|)\3|
FN) ={1,n—1}.
@ The subdominant eigenvalue is independent of the special choice of

weights.
@ The characteristic map is independent of the special choice of weights.

Theorem (Peters, R. '95)

The Catmull-Clark algorithm is a C*-scheme for all orders n.
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The Doo-Sabin algorithm

IR

@ Each old n-gon is mapped to a
new, smaller n-gon.

@ For quads, apply standard rules

for biquadratic B-splines. 1% 16 K \
@ For other n, use special weights ““ig /’“
. i 3
a= [30, ce an—1]- 16 16 AT ag

@ Doo and Sabin suggest

dio 3+ 2cos(2mj/n)
+ .
4 4n
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The Doo-Sabin algorithm

NN

o Necessary condition for C1: The discrete Fourier transform of the
vector a = [ag, ..., an—1] is

5= A%, - 80-2A, 1>X>max{1/4, |3, ..., |32}
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The Doo-Sabin algorithm

NN

@ Necessary and sufficient condition for C*: The discrete Fourier
transform of the vector a = [ag, ..., a,-1] is

a=[LAx--,% A, A,>A>max{1/4,x}

for a certain upper bound A},.

@ Loss of smoothness beyond the critical value A > A}.
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The Doo-Sabin algorithm
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The Doo-Sabin algorithm

. V187 1 27 /5563 1
A=0.95> )3 = 1 5| 3 arctan o7 + 37 0.8773.
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Simplest subdivision and non-trivial Jordan blocks
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Simplest subdivision and non-trivial Jordan blocks

For n = 3, there exists an eight-fold subdominant eigenvalue A\ = 1/4,

[164 1}4]’ [164 1}4], 1/4, 1/4, 1/4, 1/4.
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Simplest subdivision and non-trivial Jordan blocks

For n = 3, there exists an eight-fold subdominant eigenvalue \ = 1/4.
Nevertheless, the scheme is C*.
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Simplest subdivision and non-trivial Jordan blocks
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