Lecture IV

Bivariate subdivision schemes for quad meshes with arbitrary connectivity

Ulrich Reif

Technische Universität Darmstadt

Bertinoro, May 19, 2010

The reason for success in Computer Graphics:

Subdivision for univariate cubic B-splines

Subdivision for cubic B-splines uses two different rules:

Subdivision for univariate cubic B-splines

Subdivision for cubic B-splines uses two different rules:

Subdivision for univariate cubic B-splines

Subdivision for cubic B-splines uses two different rules:

Subdivision for univariate cubic B-splines

Subdivision for cubic B-splines uses two different rules:

Subdivision for bivariate cubic B-splines

Subdivision for bicubic tensor product B-splines uses three different rules:

Subdivision for bivariate cubic B-splines

Subdivision for bicubic tensor product B-splines uses three different rules:

new vertex point

Subdivision for bivariate cubic B-splines

Subdivision for bicubic tensor product B-splines uses three different rules:

new edge point

Subdivision for bivariate cubic B-splines

Subdivision for bicubic tensor product B-splines uses three different rules:

new face point

Catmull-Clark subdivision for general meshes

Topological rules:

- Each old n-gon is split into n quadrilaterals.
- After the first step, all faces are quadrilaterals.
- After a few steps, all extraordinary vertices are sufficiently well separated, and the vast majority of and vertices is regular.

Catmull-Clark subdivision for general meshes

Geometric rules:

- Use standard stencils, wherever it is possible.

Catmull-Clark subdivision for general meshes

Geometric rules:

- Use standard stencils, wherever it is possible.

Catmull-Clark subdivision for general meshes

Geometric rules:

- Use standard stencils, wherever it is possible.

Catmull-Clark subdivision for general meshes

Geometric rules:

- Use standard stencils, wherever it is possible.

Catmull-Clark subdivision for general meshes

Geometric rules:

- Use standard stencils, wherever it is possible.

Catmull-Clark subdivision for general meshes

Geometric rules:

- Use standard stencils, wherever it is possible.
- Only at the extraordinary vertex itself, a new stencil is needed.

Catmull and Clark suggest:

$$
\begin{aligned}
& \alpha=1-\frac{7}{4 n} \\
& \beta=\frac{3}{2 n^{2}} \\
& \gamma=\frac{1}{4 n^{2}}
\end{aligned}
$$

Known parts of the limit surface

Always 4×4 control points define one patch.

Known parts of the limit surface

Always 4×4 control points define one patch.

Known parts of the limit surface

Always 4×4 control points define one patch.

Known parts of the limit surface

Always 4×4 control points define one patch.

Known parts of the limit surface

- At a given level, an n-sided region around the extraordinary vertex is unknown.
- As subdivision proceeds, the known parts grow and the unknown parts shrink.
- Eventually, only a single point at the center is not covered.
- Parts which are covered at different levels, coincide.

Subdivision surface as union of spline rings

The subdivision surface can be regarded as the union of those ring-shaped parts which are newly added at every step of refinement.

General setup

- Locally, a subdivision surface can be represented as the union of spline rings, and a limit point, called the central point,

$$
\mathbf{x}=\bigcup_{m \in \mathbb{N}} \mathbf{x}^{m} \cup \mathbf{x}^{c}, \quad \mathbf{x}^{m}: \Sigma_{0} \times \mathbb{Z}_{n} \ni(s, t, j) \mapsto \mathbb{R}^{d}
$$

- All spline rings have a similar structure. They consist of a fixed number n of L-shaped patches,

$$
\mathbf{x}^{m}=\bigcup_{j \in \mathbb{Z}_{n}} \mathbf{x}_{j}^{m}, \quad \mathbf{x}_{j}^{m}: \Sigma_{0} \ni(s, t) \mapsto \mathbb{R}^{d}
$$

General setup

- Locally, a subdivision surface can be represented as the union of spline rings, and a limit point, called the central point,

$$
\mathbf{x}=\bigcup_{m \in \mathbb{N}} \mathbf{x}^{m} \cup \mathbf{x}^{c}, \quad \mathbf{x}^{m}: \Sigma_{0} \times \mathbb{Z}_{n} \ni(s, t, j) \mapsto \mathbb{R}^{d}
$$

- All spline rings have a similar structure. They consist of a fixed number n of L-shaped patches,

$$
\mathbf{x}^{m}=\bigcup_{j \in \mathbb{Z}_{n}} \mathbf{x}_{j}^{m}, \quad \quad \mathbf{x}_{j}^{m}: \Sigma_{0} \ni(s, t) \mapsto \mathbb{R}^{d}
$$

General setup

- Being part of a regular subdivision surface, the spline rings can be parametrized with the help of the basic limit functions of the regular subdivision scheme and the control points at level m,

$$
\mathbf{x}^{m}(s, t, j)=\sum_{\ell=0}^{L} f_{\ell}(s, t, j) \mathbf{p}_{\ell}^{m}=F(s, t, j) \mathbf{P}^{m}
$$

where

$$
F=\left[f_{0}, f_{1}, \ldots, f_{L}\right], \quad \mathbf{P}^{m}=\left[\begin{array}{c}
\mathbf{p}_{0}^{m} \\
\vdots \\
\mathbf{p}_{L}^{m}
\end{array}\right]
$$

- The control points at level m are obtained from the previous level by application of square subdivision matrix A,

$$
\mathbf{P}^{m}=A \mathbf{P}^{m-1}, \quad \mathbf{P}^{m}=A^{m} \mathbf{P}
$$

where the control points $\mathbf{P}=\mathbf{P}^{0}$ at level 0 are the initial data.

General setup

- The sequence of spline rings to be analyzed is

$$
\mathbf{x}^{m}=F \mathbf{P}^{m}=F A^{m} \mathbf{P}
$$

- F is built from the basic limit functions of the regular rules.
- F is mapping control points to the corresponding spline ring.
- F forms a partition of unity, $\sum_{i} f_{i}=1$.
- F is assumed to be at least C^{1}.
- F is linearly independent.
- A represents the special rules.
- A is mapping control points from one level to the next finer one.
- The rows of A (the stencils) sum to 1 .
- \mathbf{P} contains the user-given initial set of control points.

Eigendecomposition

- Defining equation

$$
A v_{i}=\lambda_{i} v_{i}
$$

- Eigenvalues, ordered by modulus,

$$
\left|\lambda_{0}\right| \geq\left|\lambda_{1}\right| \geq \cdots \geq\left|\lambda_{L}\right|, \quad D=\left[\begin{array}{ccc}
\lambda_{0} & & 0 \\
0 & \ddots & \lambda_{L}
\end{array}\right]
$$

- Right eigenvectors, existence assumed,

$$
V=\left[v_{0}, \ldots, v_{L}\right], \quad A V=V D
$$

- Left eigenvectors

$$
W=V^{-1}=\left[\begin{array}{c}
w_{0} \\
\vdots \\
w_{L}
\end{array}\right], \quad W A=D W
$$

Eigendecomposition

- With $A^{m}=V D^{m} V^{-1}=V D^{m} W$, the spline rings are

$$
\mathbf{x}^{m}=F A^{m} \mathbf{P}=F V D^{m} W \mathbf{P}
$$

Eigendecomposition

- With $A^{m}=V D^{m} V^{-1}=V D^{m} W$, the spline rings are

$$
\mathbf{x}^{m}=F A^{m} \mathbf{P}=(F V) D^{m}(W \mathbf{P})=G D^{m} \mathbf{Q}
$$

- The row-vector $G=F V$ contains the eigen-functions g_{ℓ},

$$
G=\left[g_{0}, \ldots, g_{L}\right], \quad g_{i}=F v_{i} .
$$

- The column-vector $\mathbf{Q}=W \mathbf{P}$ contains the eigen-coefficients \mathbf{q}_{ℓ},

$$
\mathbf{Q}=\left[\begin{array}{c}
\mathbf{q}_{0} \\
\vdots \\
\mathbf{q}_{L}
\end{array}\right], \quad \mathbf{q}_{\ell}=w_{\ell} \mathbf{P} .
$$

- Finally,

$$
\mathbf{x}^{m}=G D^{m} \mathbf{Q}=\sum_{\ell} \lambda_{\ell}^{m} g_{\ell} \mathbf{q}_{\ell}
$$

Convergence and the dominant eigenvalue

- If $\left|\lambda_{0}\right|>1$, then the sequence

$$
\mathbf{x}^{m}=\sum_{i} \lambda_{i}^{m} g_{i} \mathbf{q}_{i}
$$

is typically divergent. This case is excluded.

- Since all rows of A sum to 1 ,

$$
A\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right] \quad \Rightarrow \quad \lambda_{0}=1, \quad v_{0}=\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right]
$$

- The eigen-function to $\lambda_{0}=0$ is

$$
g_{0}=F v_{0}=\sum_{i} f_{i}=1
$$

- The eigen-coefficient to $\lambda_{0}=0$ is

$$
\mathbf{q}_{0}=w_{0} \mathbf{P}, \quad \text { where } w_{0} A=w_{0}
$$

Convergence and the dominant eigenvalue

- Asymptotic expansion:

$$
\mathbf{x}^{m}=\lambda_{0}^{m} g_{0} \mathbf{q}_{0}+\sum_{i \geq 1} \lambda_{i}^{m} g_{i} \mathbf{q}_{i}=\mathbf{q}_{0}+O\left(\lambda_{1}^{m}\right)
$$

- If $1=\lambda_{0}>\left|\lambda_{1}\right|$, then the sequence of spline rings converges to the central point

$$
\mathbf{x}^{c}:=\lim _{m \rightarrow \infty} \mathbf{x}^{m}=\mathbf{q}_{0}
$$

In other words: If $\lambda_{0}=1$ is the strictly dominant eigenvalue of the subdivision matrix, then the subdivision surface \mathbf{x} is continuous.

Ineffective eigenvectors

- What happens if the generating system G is not linearly independent?
- Convergence of

$$
\mathbf{x}^{m}=G A^{m} \mathbf{P}
$$

is possible even if $\varrho(A)>1$.

- There might exist ineffective eigenvectors of A, i.e.,

$$
A v=\lambda v, \quad \lambda \neq 0, \quad G v=0
$$

If so, spectral properties of A cannot be related to smoothness properties of the subdivision scheme.

Ineffective eigenvectors

- For any given matrix A there exists an equivalent matrix A_{*} without ineffective eigenvectors, i.e.,

$$
G A^{m} \mathbf{P}=G A_{*}^{m} \mathbf{P} \quad \text { for all } m \text { and } \mathbf{P}
$$

- The eigenfunctions of A_{*} corresponding to equal eigenvalues are linearly independent.
- Construction: For an ineffective eigenvector v of A, compute w such that

$$
\begin{aligned}
w^{\mathrm{t}} v & =\lambda \\
w^{\mathrm{t}} v^{\prime} & =0 \quad \text { for all other eigenvectors } v^{\prime} \text { of } A .
\end{aligned}
$$

Set $\tilde{A}:=A-v w^{t}$ and repeat.

Popular schemes for quad meshes

- Catmull-Clark (generalizing cubic B-splines)
- Doo-Sabin (generalizing quadratic B-splines)
- Cashman's NURBS subdivision (generalizing B-splines of any order)
- Simplest subdivision (generalizing C^{1} four-direction splines)
- Velho's 4-8 scheme (generalizing C^{4} four-direction box splines)
- Kobbelt's interpolatory scheme (generalizing the four-point scheme)

Geri's game - An Oscar for subdivision

Geri's game - An Oscar for subdivision

$\square>4$ 司 \quad •三

Geri's game - An Oscar for subdivision

