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The reason for success in Computer Graphics:
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Subdivision for univariate cubic B-splines

Subdivision for cubic B-splines uses two different rules:
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Subdivision for bivariate cubic B-splines

Subdivision for bicubic tensor product B-splines uses three different rules:
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Subdivision for bivariate cubic B-splines

Subdivision for bicubic tensor product B-splines uses three different rules:
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Subdivision for bivariate cubic B-splines

Subdivision for bicubic tensor product B-splines uses three different rules:
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Catmull-Clark subdivision for general meshes

Topological rules:

Each old n-gon is split into n quadrilaterals.

After the first step, all faces are quadrilaterals.

After a few steps, all extraordinary vertices are sufficiently well
separated, and the vast majority of and vertices is regular.
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Catmull-Clark subdivision for general meshes

Geometric rules:

Use standard stencils, wherever it is possible.
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Catmull-Clark subdivision for general meshes

Geometric rules:

Use standard stencils, wherever it is possible.

Only at the extraordinary vertex itself, a new stencil is needed.
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Known parts of the limit surface

Always 4× 4 control points define one patch.
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Known parts of the limit surface

At a given level, an n-sided region around the extraordinary vertex is
unknown.

As subdivision proceeds, the known parts grow and the unknown
parts shrink.

Eventually, only a single point at the center is not covered.

Parts which are covered at different levels, coincide.
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Subdivision surface as union of spline rings

The subdivision surface can be regarded as the union of those ring-shaped
parts which are newly added at every step of refinement.
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General setup

Locally, a subdivision surface can be represented as the union of
spline rings, and a limit point, called the central point,

x =
⋃

m∈N
xm ∪ xc , xm : Σ0 × Zn 3 (s, t, j) 7→ Rd .

All spline rings have a similar structure. They consist of a fixed
number n of L-shaped patches,

xm =
⋃

j∈Zn

xm
j , xm

j : Σ0 3 (s, t) 7→ Rd .
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General setup

Being part of a regular subdivision surface, the spline rings can be
parametrized with the help of the basic limit functions of the regular
subdivision scheme and the control points at level m,

xm(s, t, j) =
L∑

`=0

f`(s, t, j)pm
` = F (s, t, j)Pm,

where

F = [f0, f1, . . . , fL], Pm =

pm
0...

pm
L

 .
The control points at level m are obtained from the previous level by
application of square subdivision matrix A,

Pm = APm−1, Pm = AmP,

where the control points P = P0 at level 0 are the initial data.
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General setup

The sequence of spline rings to be analyzed is

xm = FPm = FAmP.

F is built from the basic limit functions of the regular rules.
I F is mapping control points to the corresponding spline ring.
I F forms a partition of unity,

∑
i fi = 1.

I F is assumed to be at least C 1.
I F is linearly independent.

A represents the special rules.
I A is mapping control points from one level to the next finer one.
I The rows of A (the stencils) sum to 1.

P contains the user-given initial set of control points.
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Eigendecomposition

Defining equation

Avi = λivi .

Eigenvalues, ordered by modulus,

|λ0| ≥ |λ1| ≥ · · · ≥ |λL|, D =

[
λ0 0

. . .
0 λL

]
.

Right eigenvectors, existence assumed,

V = [v0, . . . , vL], AV = VD.

Left eigenvectors

W = V−1 =

w0...
wL

 , WA = DW .
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Eigendecomposition

With Am = VDmV−1 = VDmW , the spline rings are

xm = FAmP = FVDmW P.

The row-vector G = FV contains the eigen-functions g`,

G = [g0, . . . , gL], gi = Fvi .

The column-vector Q = W P contains the eigen-coefficients q`,

Q =

[
q0...
qL

]
, q` = w`P.

Finally,

xm = GDmQ =
∑

`

λm
` g`q`.
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Convergence and the dominant eigenvalue

If |λ0| > 1, then the sequence

xm =
∑

i

λm
i giqi

is typically divergent. This case is excluded.

Since all rows of A sum to 1,

A

1...
1

 =

1...
1

 ⇒ λ0 = 1, v0 =

1...
1

 .
The eigen-function to λ0 = 0 is

g0 = Fv0 =
∑

i

fi = 1.

The eigen-coefficient to λ0 = 0 is

q0 = w0P, where w0A = w0.
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Convergence and the dominant eigenvalue

Asymptotic expansion:

xm = λm
0 g0q0 +

∑
i≥1

λm
i giqi = q0 + O(λm

1 ).

If 1 = λ0 > |λ1|, then the sequence of spline rings converges to the
central point

xc := lim
m→∞

xm = q0.

In other words: If λ0 = 1 is the strictly dominant eigenvalue of the
subdivision matrix, then the subdivision surface x is continuous.
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Ineffective eigenvectors

What happens if the generating system G is not linearly independent?

Convergence of

xm = GAmP

is possible even if %(A) > 1.

There might exist ineffective eigenvectors of A, i.e.,

Av = λv , λ 6= 0, Gv = 0.

If so, spectral properties of A cannot be related to smoothness
properties of the subdivision scheme.
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Ineffective eigenvectors

For any given matrix A there exists an equivalent matrix A∗ without
ineffective eigenvectors, i.e.,

GAmP = GAm
∗ P for all m and P.

The eigenfunctions of A∗ corresponding to equal eigenvalues are
linearly independent.

Construction: For an ineffective eigenvector v of A, compute w such
that

w tv = λ

w tv ′ = 0 for all other eigenvectors v ′ of A.

Set Ã := A− vw t and repeat.
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Popular schemes for quad meshes

Catmull-Clark (generalizing cubic B-splines)

Doo-Sabin (generalizing quadratic B-splines)

Cashman’s NURBS subdivision (generalizing B-splines of any order)

Simplest subdivision (generalizing C 1 four-direction splines)

Velho’s 4-8 scheme (generalizing C 4 four-direction box splines)

Kobbelt’s interpolatory scheme (generalizing the four-point scheme)
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Geri’s game – An Oscar for subdivision
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