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Overview

Univariate subdivision as a binary tree of products of square matrices.
Contractivity of matrices « continuity
Joint spectral radius matrices «<» Holder continuity

Strategies for computing the JSR.

Examples

Ulrich Reif 18.05.10 2 /26



Approach 1: Laurent Series

@ Sequence of data points at level k € Ny,
k= {fik}iez-

o Identify with Laurent series

f(z) == Z k2!,

i€z
@ Subdivision represented by symbol a,
F1(2) = a(2)f*(2?).

@ Study properties of product function

a(z)a(z?)a(z*) - - a(sz) —  exponential growth in k.
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Approach 2: Matrices (global)

@ Sequence of data points at level k € Ny,
= {f*}icz

@ Subdivision represented by infinte matrix A € RZXZ
fk _ Afk*l _ A2fkf2 - .= Aka

e Problem: How to study properties of AX?
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Approach 2: Matrices (local)

o Idea: Reduce infinite sequence fO of initial data points to the vector
FO defining the limit function £ on [0, 1],
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Approach 2: Matrices (local)
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Approach 2: Matrices (local)

@ /dea: Reduce infinite sequence fO of initial data points to the vector
FO defining the limit function £ on [0, 1],
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Approach 2: Matrices (local)

o Idea: Reduce infinite sequence fO of initial data points to the vector
F° defining the limit function £ on [0, 1],

FO = {f*}iz1:nps No = N
FU = {f}icim, Ny =N+1
F? = {f}ic1n, Ny =N +3
FK={fFicin,  Ne=N+25-1
o Local subdivision represented by finite matrices AX,

Fk:Aka_l:AkAk_le_2:"':AkAk_l"'AlFO

@ Problem: How to study properties of the product matrix?
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Approach 2: Matrices (local, square)

o Idea: Reduce infinite sequence fO of initial data points to the vector
FO defining the limit function f on [0, 1],

FO = {f2}i—1:np No =N
F'={f}icin,, M =N+1
o Idea: Partition F! into two sub-vectors of length N,
Fr =16 iy, sl
Fi=If.f.. .
Fr= [f, o fufil
@ Local subdivision represented by a pair (S¢, S;) of square matrices,
F} = S,F° defining f on [0,1/2]
F! = S,F° defining f on [1/2,1]
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Approach 2: Matrices (local, square)

o Idea: Reduce infinite sequence fO of initial data points to the vector
FO defining the limit function £ on [0, 1],

FO = {2 _ 1, No=N
F'={fY—in, M=N+1

@ Idea: Partition F! into two sub-vectors of length N,

Fr=1[f . iy, sl
F€1 = [fllaf217"-7fl\ll]
Fr1 = [76217"'7fl\llvfl\ll+1]

@ Local subdivision represented by a pair (Sp, S1) of square matrices,

F3 = SoF° defining f on [0,1/2]
Fi = S1F% defining f on [1/2,1]
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Approach 2: Matrices (local, square)

_=0
1 F=F 1
T T
S F S. F
1 0 1 1 1
T T T
| SOSOF | SlsoF | Sole | Slle |
T T T T T

. SOSOSOF . slsosoF . soslsOF . slslsoF . sosole . slsole . soslle . 313131': .
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Approach 2: Matrices (local, square)

At level k, there are 2% sub-intervals, indexed by

I =[i,...,i] €{0,1}

The binary number 0.i1 - - - ii is the left end-point of the sub-interval
corresponding to /.

The vector F,k of data defining the limit function f on the
sub-interval with index [ is given by

F,k = S,FO, where 5, :=S5; ---§;.

Analyze binary tree of products of (Sp, S1).
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The difference scheme

o Let
A =

denote the difference matrix.

@ The matrices D = (Dy, D1) representing the difference scheme
AF}! = D;AF°
must satisfy
AS; = DiA.

@ A solution exists and is unique iff the rows of Sp, S sum up to 1.
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The difference scheme

o Let
A:: s Ail =

denote the difference matrix and the summation matrix, resp.
@ The matrices D = (Dy, D1) representing the difference scheme

AF! = S;AF°
must satisfy
AS; = DiA.

@ A solution exists and is unique iff the rows of Sg, S; sum up to 1,

D; = AS;,A7L.
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The difference scheme

@ The differences at level k are given by

AFf =D, AF°, D;:=D; --- Dy,
where | = [i1,...,i] € {0,1}%.

o The subdivision scheme S = (Sp, S1) generates a CO-limit function iff
the difference scheme D = (Dy, D;) is contractive, i.e., iff

Dz =0 for any infinite sequence Z € {0, 1},
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The difference scheme

@ The differences at level k are given by
AFf =D, AF°, D;:=D; --- Dy,
where | = [i1,...,i] € {0,1}%.
o The subdivision scheme S = (Sp, S1) generates a CO-limit function iff
the difference scheme D = (Dy, D;) is contractive, i.e., iff

Dz =0 for any infinite sequence Z € {0, 1},

@ The difference scheme is not contractive if

o(Dy) > 1 for some index vector /.

@ The difference scheme is contractive if there exists N € N such that

IIDy|| <1 for all index vectors / of length N.
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The four-point scheme |
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The four-point scheme |

Difference scheme D:
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The four-point scheme |

Divided difference scheme D := 2D:

— W % w 0 0 w %—w 0 O
w %—w 0 O 0 —w % w 0
Do=2|0 —~w 3 w 0|, D1=20 w 1 -w ©
0 w %—w 0 0 0 —w % w
|0 0 —w % w| 0 0 w %—w_
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The four-point scheme |

Difference scheme D? of divided difference scheme:

2w 2w 0 0 —w Ww —w 0
—w W—w —w 0 0 2w 2w 0

0 2w 2w 0
0 —w W—w—-w 0 0 2w 2w
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The four-point scheme |

o The FPS generates C!-limit functions iff the difference scheme D? of
the divided difference scheme is contractive.

@ Determining the maximal set (0, wsyp) providing C!l is a challenge:

> '87, based on level n =2, wg, > & = .125

> '92, based on level n = 3, wg,p > \/58_1 =~ .155

> '96, based on level n = 22, wy,, > .188
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The four-point scheme |

o The FPS generates C!-limit functions iff the difference scheme D? of
the divided difference scheme is contractive.

@ Determining the maximal set (0, wsyp) providing C!l is a challenge:

> '87, based on level n =2, wg, > & = .125

> '92, based on level n = 3, wg,p > \/58_1 =~ .155

> '96, based on level n = 22, wy,, > .188

» '06, based on refined analytic approach,

2/3
27 +3v105)77 —6
Weup 1= ( ) ~ 0.192729.

12 (27 + 3v/105) /°
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Breadth-first vs. depth-first search

D is contractive if there exists a level N with contractive nodes,

IIDy]] <1 forall I of length N,

i.e., if a breadth first search terminates.
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Breadth-first vs. depth-first search

0 0
1 1
2 2
3 3
4 4

5

6L

D is contractive if there exists a proper subtree 7 with contractive nodes,
i.e., if a depth first search terminates.

For w = 0.188, reduction from 4,000,000 to 159 matrices.
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Bad news |

The problem of checking a pair of matrices (Do, D;)
for contractivity is undecidable.
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Holder continuity and the joint spectral radius

The rate of convergence of ||D;|| — 0 as #/ — oo determines the
Holder continuity of the limit function f.

The joint spectral radius of (Dg, Dy) is defined by

jsr(Do, D1) :==sup sup {/o(Dy).
neN 1e{0,1}"

The limit function f is CO if

jSI’(D(), Dl) < 1.
@ The limit function f is C%® if

jsr(Do, D1) < 27
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Basic observations

For any / € {0,1}",

\n/ Q(D/) S jSI’(Do, Dl).

@ For any norm,
jst(Do, D1) < max /|| Dy]|.
le{0,1}n

There exists a norm || - || on RY with

jsr(Do, D1) = max{|| Dol || D I+ }-
@ For symmetric subdivision schemes and (2 x 2)-matrices Dy, D;,

jsr(Do, D1) = max{e(Do), v/e(DoD1)}-
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Corner cutting

1-w w w 1-w
1—w w 0 w 1—w 0
So = w 1-w 0, =0 1—-w w

0 l—-w w 0 w 1—w
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Corner cutting

- ; w 1-w

w w 0 1-—2w
The joint spectral radius is given by o
jsr(Do, D1) = max{l—zw, w/z+m} :
02| /’/
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The four-point scheme ||

For the four-point scheme with
parameter

e wef0,1/20], it is
jsr(Dg. DY) = o(Dg).

o w € [1/10,2/10], it is

jsr(DZ, D}) = /o(D3D?).

11

0.9r

0.81

0.7r

0.05

The upper bound we,p is obtained from solving o(D3D?) = 1.
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Bad news Il

@ The finiteness conjecture

jst(Do, D1) = /o(D;) for some | € {0,1}"

was disproven.
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Bad news Il

@ The finiteness conjecture

jst(Do, D1) = /o(D;) for some | € {0,1}"

was disproven.

@ The jsr-problem is np-complete with respect to accuracy and
dimension.

@ In general, the numerical computation of jsr(Dp, D1) with accuracy e
requires

O((dim Do)/*)

operations.
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Good news

@ So far, no counterexamples to the finiteness conjecture have been
encountered in practice.

@ Robust algorithm for verifying
jsr(Do, D1) = ¥/ o(Dy)

for given | is available (implementation in progress).
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Exact evaluation of the JSR

@ Determine a candidate / for the finiteness conjecture,

er(Do, D1) = \n/ Q(D/).
o Let

~ DI
Di= ——"~—.
JSF(Do, Dl)

@ Verifying the conjecture is equivalent to showing

jsr(ﬁo, Dl) =1.
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Exact evaluation of the JSR - Method 1

@ Start with unit cube MO.

@ If the recursion
M**+1 = conv(DoM*, Dy M¥)
with stopping criterion
Mk-‘rl C Mk

terminates, then the conjecture is verified.

o The set M* defines the unit ball wrt. the optimal norm || - ..
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Exact evaluation of the JSR - Method 2

@ Conisder tree of matrix products with
> edges of type

Do, D1, {Df : n € No}
> set-valued nodes of type
D ={D,; DDk : n € No}
o If a depth-first search with stopping criterion

max || D] < 1
DeD

terminates, then the conjecture is verified.
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Conclusion

@ The matrix approach provides an alternative to the Laurent series
formalism.

@ From a theoretical point of view, both methods are equivalent.

@ For special purposes, one approach may be more efficient than the
other.

@ In general, sharp results are beyond reach, and even good estimates
may be very hard to determine.

@ In practise, sharp results are within reach.
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