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Overview

Univariate subdivision as a binary tree of products of square matrices.

Contractivity of matrices ↔ continuity

Joint spectral radius matrices ↔ Hölder continuity

Strategies for computing the JSR.

Examples

Ulrich Reif 18.05.10 2 / 26



Approach 1: Laurent Series

Sequence of data points at level k ∈ N0,

fk = {f k
i }i∈Z.

Identify with Laurent series

fk(z) :=
∑
i∈Z

f k
i z i .

Subdivision represented by symbol a,

fk+1(z) = a(z)fk(z2).

Study properties of product function

a(z)a(z2)a(z4) · · · a(z2k
) → exponential growth in k.
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Approach 2: Matrices (global)

Sequence of data points at level k ∈ N0,

fk = {f k
i }i∈Z

Subdivision represented by infinte matrix A ∈ RZ×Z,

fk = Afk−1 = A2fk−2 = · · · = Ak f0

Problem: How to study properties of Ak?
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Approach 2: Matrices (local)

Idea: Reduce infinite sequence f0 of initial data points to the vector
F 0 defining the limit function f on [0, 1],
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Approach 2: Matrices (local)

Idea: Reduce infinite sequence f0 of initial data points to the vector
F 0 defining the limit function f on [0, 1],

F 0 = {f 0
i }i=1:N0 , N0 = N

F 1 = {f 1
i }i=1:N1 , N1 = N + 1

F 2 = {f 2
i }i=1:N2 , N2 = N + 3

F k = {f k
i }i=1:Nk

, Nk = N + 2k − 1

Local subdivision represented by finite matrices Ak ,

F k = AkF k−1 = AkAk−1F k−2 = · · · = AkAk−1 · · ·A1F 0

Problem: How to study properties of the product matrix?
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Approach 2: Matrices (local, square)

Idea: Reduce infinite sequence f0 of initial data points to the vector
F 0 defining the limit function f on [0, 1],

F 0 = {f 0
i }i=1:N0 , N0 = N

F 1 = {f 1
i }i=1:N1 , N1 = N + 1

Idea: Partition F 1 into two sub-vectors of length N,

F 1 = [f 1
1 , f 1

2 , . . . , f 1
N , f 1

N+1]

F 1
` = [f 1

1 , f 1
2 , . . . , f 1

N ]

F 1
r = [f 1

2 , . . . , f 1
N , f 1

N+1]

Local subdivision represented by a pair (S`, Sr ) of square matrices,

F 1
` = S`F

0 defining f on [0, 1/2]

F 1
r = Sr F 0 defining f on [1/2, 1]
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Approach 2: Matrices (local, square)
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Approach 2: Matrices (local, square)

At level k, there are 2k sub-intervals, indexed by

I = [i1, . . . , ik ] ∈ {0, 1}k .

The binary number 0.i1 · · · ik is the left end-point of the sub-interval
corresponding to I .

The vector F k
I of data defining the limit function f on the

sub-interval with index I is given by

F k
I = SI F

0, where SI := Sik · · · Si1 .

Analyze binary tree of products of (S0, S1).
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The difference scheme

Let

∆ :=

−1 1 0 · · · 0
. . .

. . .

0 · · · 0 −1 1


denote the difference matrix.

The matrices D = (D0, D1) representing the difference scheme

∆F 1
i = Di∆F 0

must satisfy

∆Si = Di∆.

A solution exists and is unique iff the rows of S0, S1 sum up to 1.
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The difference scheme

Let

∆ :=

−1 1 0 · · ·
. . .

. . .

· · · 0 −1 1

 , ∆−1 :=

0 1 · · · 1
. . .

. . .

0 · · · 0 1


T

denote the difference matrix and the summation matrix, resp.

The matrices D = (D0, D1) representing the difference scheme

∆F 1
i = Si∆F 0

must satisfy

∆Si = Di∆.

A solution exists and is unique iff the rows of S0, S1 sum up to 1,

Di = ∆Si∆
−1.

Ulrich Reif 18.05.10 10 / 26



The difference scheme

The differences at level k are given by

∆F k
I = DI ∆F 0, DI := Dik · · ·Di1 ,

where I = [i1, . . . , ik ] ∈ {0, 1}k .

The subdivision scheme S = (S0, S1) generates a C 0-limit function iff
the difference scheme D = (D0, D1) is contractive, i.e., iff

DI = 0 for any infinite sequence I ∈ {0, 1}N.

The difference scheme is not contractive if

%(DI ) ≥ 1 for some index vector I .

The difference scheme is contractive if there exists N ∈ N such that

‖DI‖ < 1 for all index vectors I of length N.
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The four-point scheme I

0 1 0 0 −w w’ w’ −w

Subdivision scheme S :

S0 =



0 1 0 0 0 0
−ω ω′ ω′ −ω 0 0

0 0 1 0 0 0
0 −ω ω′ ω′ −ω 0
0 0 0 1 0 0
0 0 −ω ω′ ω′ −ω

 , S1 =



−ω ω′ ω′ −ω 0 0
0 0 1 0 0 0
0 −ω ω′ ω′ −ω 0
0 0 0 1 0 0
0 0 −ω ω′ ω′ −ω
0 0 0 0 0 1
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The four-point scheme I

0 1 0 0 −w w’ w’ −w

Difference scheme D:

D0 =


−ω 1

2 ω 0 0

ω 1
2 −ω 0 0

0 −ω 1
2 ω 0

0 ω 1
2 −ω 0

0 0 −ω 1
2 ω

 , D1 =


ω 1

2 −ω 0 0

0 −ω 1
2 ω 0

0 ω 1
2 −ω 0

0 0 −ω 1
2 ω

0 0 ω 1
2 −ω



Ulrich Reif 18.05.10 12 / 26



The four-point scheme I

0 1 0 0 −w w’ w’ −w

Divided difference scheme D̄ := 2D:

D̄0 = 2


−ω 1

2 ω 0 0

ω 1
2 −ω 0 0

0 −ω 1
2 ω 0

0 ω 1
2 −ω 0

0 0 −ω 1
2 ω

 , D̄1 = 2


ω 1

2 −ω 0 0

0 −ω 1
2 ω 0

0 ω 1
2 −ω 0

0 0 −ω 1
2 ω

0 0 ω 1
2 −ω
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The four-point scheme I

0 1 0 0 −w w’ w’ −w

Difference scheme D2 of divided difference scheme:

D2
0 = 2


2ω 2ω 0 0

−ω ω′−ω −ω 0

0 2ω 2ω 0

0 −ω ω′−ω −ω

 , D2
1 = 2


−ω ω′−ω −ω 0

0 2ω 2ω 0

0 −ω ω′−ω −ω

0 0 2ω 2ω
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The four-point scheme I

The FPS generates C 1-limit functions iff the difference scheme D2 of
the divided difference scheme is contractive.

Determining the maximal set (0, ωsup) providing C 1 is a challenge:

I ’87, based on level n = 2, ωsup ≥ 1
8 = .125

I ’92, based on level n = 3, ωsup ≥
√

5−1
8 ≈ .155

I ’96, based on level n = 22, ωsup ≥ .188

I ’06, based on refined analytic approach,

ωsup :=

(
27 + 3

√
105
)2/3 − 6

12
(
27 + 3

√
105
)1/3

≈ 0.192729.
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Breadth-first vs. depth-first search

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

D is contractive if there exists a level N with contractive nodes,

‖DI‖ < 1 for all I of length N,

i.e., if a breadth first search terminates.
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Breadth-first vs. depth-first search
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D is contractive if there exists a proper subtree T with contractive nodes,
i.e., if a depth first search terminates.

For ω = 0.188, reduction from 4, 000, 000 to 159 matrices.

Ulrich Reif 18.05.10 15 / 26



Bad news I

The problem of checking a pair of matrices (D0, D1)
for contractivity is undecidable.
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Hölder continuity and the joint spectral radius

The rate of convergence of ‖DI‖ → 0 as #I →∞ determines the
Hölder continuity of the limit function f .

The joint spectral radius of (D0, D1) is defined by

jsr(D0, D1) := sup
n∈N

sup
I∈{0,1}n

n
√

%(DI ).

The limit function f is C 0 if

jsr(D0, D1) < 1.

The limit function f is C 0,α if

jsr(D0, D1) < 2−α.
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Basic observations

For any I ∈ {0, 1}n,

n
√

%(DI ) ≤ jsr(D0, D1).

For any norm,

jsr(D0, D1) ≤ max
I∈{0,1}n

n
√
‖DI‖.

There exists a norm ‖ · ‖∗ on Rd with

jsr(D0, D1) = max
{
‖D0‖∗, ‖D1‖∗

}
.

For symmetric subdivision schemes and (2× 2)-matrices D0, D1,

jsr(D0, D1) = max
{
%(D0),

√
%(D0D1)

}
.
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Corner cutting

1−w w w 1−w

S0 =

1− ω ω 0
ω 1− ω 0
0 1− ω ω

 , S1 =

ω 1− ω 0
0 1− ω ω
0 ω 1− ω
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Corner cutting

1−w w w 1−w

D0 =

[
1− 2ω 0

ω ω

]
, D1 =

[
ω ω
0 1− 2ω

]

The joint spectral radius is given by

jsr(D0, D1) = max
{

1−2ω, ω/2+
√

ω − 7ω2/4
}

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ulrich Reif 18.05.10 19 / 26



The four-point scheme II

For the four-point scheme with
parameter

ω ∈ [0, 1/20], it is

jsr(D2
0 , D2

1 ) = %(D2
0 ).

ω ∈ [1/10, 2/10], it is

jsr(D2
0 , D2

1 ) =
√

%(D2
0D2

1 ).
0 0.05 0.1 0.15 0.2
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1.1

The upper bound ωsup is obtained from solving %(D2
0D2

1 ) = 1.
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Bad news II

The finiteness conjecture

jsr(D0, D1) = n
√

%(DI ) for some I ∈ {0, 1}n

was disproven.

The jsr-problem is np-complete with respect to accuracy and
dimension.

In general, the numerical computation of jsr(D0, D1) with accuracy ε
requires

O
(
(dim D0)1/ε

)
operations.
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Good news

So far, no counterexamples to the finiteness conjecture have been
encountered in practice.

Robust algorithm for verifying

jsr(D0, D1) = n
√

%(DI )

for given I is available (implementation in progress).
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Exact evaluation of the JSR

Determine a candidate I for the finiteness conjecture,

jsr(D0, D1) = n
√

%(DI ).

Let

D̃i =
Di

jsr(D0, D1)
.

Verifying the conjecture is equivalent to showing

jsr(D̃0, D̃1) = 1.
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Exact evaluation of the JSR - Method 1

Start with unit cube M0.

If the recursion

Mk+1 = conv(D̃0Mk , D̃1Mk)

with stopping criterion

Mk+1 ⊆ Mk

terminates, then the conjecture is verified.

The set Mk defines the unit ball wrt. the optimal norm ‖ · ‖∗.
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Exact evaluation of the JSR - Method 2

Conisder tree of matrix products with
I edges of type

D0, D1, {Dn
I : n ∈ N0}

I set-valued nodes of type

D = {DJ Dn
I DK : n ∈ N0}

If a depth-first search with stopping criterion

max
D∈D
‖D‖ < 1

terminates, then the conjecture is verified.
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Conclusion

The matrix approach provides an alternative to the Laurent series
formalism.

From a theoretical point of view, both methods are equivalent.

For special purposes, one approach may be more efficient than the
other.

In general, sharp results are beyond reach, and even good estimates
may be very hard to determine.

In practise, sharp results are within reach.
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