Lecture II

Univariate subdivision schemes and their analysis by the matrix approach

Ulrich Reif
Technische Universität Darmstadt

Bertinoro, May 18, 2010

Overview

- Univariate subdivision as a binary tree of products of square matrices.
- Contractivity of matrices \leftrightarrow continuity
- Joint spectral radius matrices \leftrightarrow Hölder continuity
- Strategies for computing the JSR.
- Examples

Approach 1: Laurent Series

- Sequence of data points at level $k \in \mathbb{N}_{0}$,

$$
\mathbf{f}^{k}=\left\{f_{i}^{k}\right\}_{i \in \mathbb{Z}}
$$

- Identify with Laurent series

$$
\mathbf{f}^{k}(z):=\sum_{i \in \mathbb{Z}} f_{i}^{k} z^{i}
$$

- Subdivision represented by symbol a,

$$
\mathbf{f}^{k+1}(z)=a(z) \mathbf{f}^{k}\left(z^{2}\right)
$$

- Study properties of product function

$$
a(z) a\left(z^{2}\right) a\left(z^{4}\right) \cdots a\left(z^{2^{k}}\right) \quad \rightarrow \quad \text { exponential growth in } k .
$$

Approach 2: Matrices (global)

- Sequence of data points at level $k \in \mathbb{N}_{0}$,

$$
\mathbf{f}^{k}=\left\{f_{i}^{k}\right\}_{i \in \mathbb{Z}}
$$

- Subdivision represented by infinte matrix $A \in \mathbb{R}^{\mathbb{Z} \times \mathbb{Z}}$,

$$
\mathbf{f}^{k}=A \mathbf{f}^{k-1}=A^{2} \mathbf{f}^{k-2}=\cdots=A^{k} \mathbf{f}^{0}
$$

- Problem: How to study properties of A^{k} ?

Approach 2: Matrices (local)

- Idea: Reduce infinite sequence \mathbf{f}^{0} of initial data points to the vector F^{0} defining the limit function f on $[0,1]$,

Approach 2: Matrices (local)

- Idea: Reduce infinite sequence \mathbf{f}^{0} of initial data points to the vector F^{0} defining the limit function f on $[0,1]$,

$$
k=0
$$

Approach 2: Matrices (local)

- Idea: Reduce infinite sequence \mathbf{f}^{0} of initial data points to the vector F^{0} defining the limit function f on $[0,1]$,

$$
k=0
$$

Approach 2: Matrices (local)

- Idea: Reduce infinite sequence \mathbf{f}^{0} of initial data points to the vector F^{0} defining the limit function f on $[0,1]$,

Approach 2: Matrices (local)

- Idea: Reduce infinite sequence f^{0} of initial data points to the vector F^{0} defining the limit function f on $[0,1]$,

$$
\begin{array}{ll}
F^{0}=\left\{f_{i}^{0}\right\}_{i=1: N_{0}}, & N_{0}=N \\
F^{1}=\left\{f_{i}^{1}\right\}_{i=1: N_{1}}, & N_{1}=N+1 \\
F^{2}=\left\{f_{i}^{2}\right\}_{i=1: N_{2}}, & N_{2}=N+3 \\
F^{k}=\left\{f_{i}^{k}\right\}_{i=1: N_{k}}, & N_{k}=N+2^{k}-1
\end{array}
$$

- Local subdivision represented by finite matrices A^{k},

$$
F^{k}=A^{k} F^{k-1}=A^{k} A^{k-1} F^{k-2}=\cdots=A^{k} A^{k-1} \cdots A^{1} F^{0}
$$

- Problem: How to study properties of the product matrix?

Approach 2: Matrices (local, square)

- Idea: Reduce infinite sequence \mathbf{f}^{0} of initial data points to the vector F^{0} defining the limit function f on $[0,1]$,

$$
\begin{array}{ll}
F^{0}=\left\{f_{i}^{0}\right\}_{i=1: N_{0}}, & N_{0}=N \\
F^{1}=\left\{f_{i}^{1}\right\}_{i=1: N_{1}}, & N_{1}=N+1
\end{array}
$$

- Idea: Partition F^{1} into two sub-vectors of length N,

$$
\begin{aligned}
& F^{1}=\left[f_{1}^{1}, f_{2}^{1}, \ldots, f_{N}^{1}, f_{N+1}^{1}\right] \\
& F_{\ell}^{1}=\left[f_{1}^{1}, f_{2}^{1}, \ldots, f_{N}^{1}\right] \\
& F_{r}^{1}=\quad\left[f_{2}^{1}, \ldots, f_{N}^{1}, f_{N+1}^{1}\right]
\end{aligned}
$$

- Local subdivision represented by a pair $\left(S_{\ell}, S_{r}\right)$ of square matrices,

$$
\begin{array}{ll}
F_{\ell}^{1}=S_{\ell} F^{0} & \text { defining } f \text { on }[0,1 / 2] \\
F_{r}^{1}=S_{r} F^{0} & \text { defining } f \text { on }[1 / 2,1]
\end{array}
$$

Approach 2: Matrices (local, square)

- Idea: Reduce infinite sequence f^{0} of initial data points to the vector F^{0} defining the limit function f on $[0,1]$,

$$
\begin{array}{ll}
F^{0}=\left\{f_{i}^{0}\right\}_{i=1: N_{0}}, & N_{0}=N \\
F^{1}=\left\{f_{i}^{1}\right\}_{i=1: N_{1}}, & N_{1}=N+1
\end{array}
$$

- Idea: Partition F^{1} into two sub-vectors of length N,

$$
\begin{aligned}
& F^{1}=\left[f_{1}^{1}, f_{2}^{1}, \ldots, f_{N}^{1}, f_{N+1}^{1}\right] \\
& F_{\ell}^{1}=\left[f_{1}^{1}, f_{2}^{1}, \ldots, f_{N}^{1}\right] \\
& F_{r}^{1}=\quad\left[f_{2}^{1}, \ldots, f_{N}^{1}, f_{N+1}^{1}\right]
\end{aligned}
$$

- Local subdivision represented by a pair $\left(S_{0}, S_{1}\right)$ of square matrices,

$$
\begin{array}{ll}
F_{0}^{1}=S_{0} F^{0} & \text { defining } f \text { on }[0,1 / 2] \\
F_{1}^{1}=S_{1} F^{0} & \text { defining } f \text { on }[1 / 2,1]
\end{array}
$$

Approach 2: Matrices (local, square)

Approach 2: Matrices (local, square)

- At level k, there are 2^{k} sub-intervals, indexed by

$$
I=\left[i_{1}, \ldots, i_{k}\right] \in\{0,1\}^{k}
$$

- The binary number $0 . i_{1} \cdots i_{k}$ is the left end-point of the sub-interval corresponding to l.
- The vector F_{l}^{k} of data defining the limit function f on the sub-interval with index l is given by

$$
F_{l}^{k}=S_{l} F^{0}, \quad \text { where } \quad S_{I}:=S_{i_{k}} \cdots S_{i_{1}}
$$

- Analyze binary tree of products of $\left(S_{0}, S_{1}\right)$.

The difference scheme

- Let

$$
\Delta:=\left[\begin{array}{ccccc}
-1 & 1 & 0 & \cdots & 0 \\
& \ddots & & \ddots & \\
0 & \cdots & 0 & -1 & 1
\end{array}\right]
$$

denote the difference matrix.

- The matrices $D=\left(D_{0}, D_{1}\right)$ representing the difference scheme

$$
\Delta F_{i}^{1}=D_{i} \Delta F^{0}
$$

must satisfy

$$
\Delta S_{i}=D_{i} \Delta
$$

- A solution exists and is unique iff the rows of S_{0}, S_{1} sum up to 1 .

The difference scheme

- Let

$$
\Delta:=\left[\begin{array}{cccc}
-1 & 1 & 0 & \cdots \\
& \ddots & \ddots & \\
\cdots & 0 & -1 & 1
\end{array}\right], \quad \Delta^{-1}:=\left[\begin{array}{cccc}
0 & 1 & \cdots & 1 \\
& \ddots & \ddots & \\
0 & \cdots & 0 & 1
\end{array}\right]^{T}
$$

denote the difference matrix and the summation matrix, resp.

- The matrices $D=\left(D_{0}, D_{1}\right)$ representing the difference scheme

$$
\Delta F_{i}^{1}=S_{i} \Delta F^{0}
$$

must satisfy

$$
\Delta S_{i}=D_{i} \Delta
$$

- A solution exists and is unique iff the rows of S_{0}, S_{1} sum up to 1 ,

$$
D_{i}=\Delta S_{i} \Delta^{-1}
$$

The difference scheme

- The differences at level k are given by

$$
\Delta F_{l}^{k}=D_{l} \Delta F^{0}, \quad D_{l}:=D_{i_{k}} \cdots D_{i_{1}}
$$

where $I=\left[i_{1}, \ldots, i_{k}\right] \in\{0,1\}^{k}$.

- The subdivision scheme $S=\left(S_{0}, S_{1}\right)$ generates a C^{0}-limit function iff the difference scheme $D=\left(D_{0}, D_{1}\right)$ is contractive, i.e., iff

$$
D_{\mathcal{I}}=0 \quad \text { for any infinite sequence } \mathcal{I} \in\{0,1\}^{\mathbb{N}}
$$

The difference scheme

- The differences at level k are given by

$$
\Delta F_{l}^{k}=D_{l} \Delta F^{0}, \quad D_{l}:=D_{i_{k}} \cdots D_{i_{1}}
$$

where $I=\left[i_{1}, \ldots, i_{k}\right] \in\{0,1\}^{k}$.

- The subdivision scheme $S=\left(S_{0}, S_{1}\right)$ generates a C^{0}-limit function iff the difference scheme $D=\left(D_{0}, D_{1}\right)$ is contractive, i.e., iff

$$
D_{\mathcal{I}}=0 \quad \text { for any infinite sequence } \mathcal{I} \in\{0,1\}^{\mathbb{N}}
$$

- The difference scheme is not contractive if

$$
\varrho\left(D_{l}\right) \geq 1 \quad \text { for some index vector } l .
$$

The difference scheme

- The differences at level k are given by

$$
\Delta F_{l}^{k}=D_{l} \Delta F^{0}, \quad D_{l}:=D_{i_{k}} \cdots D_{i_{1}}
$$

where $I=\left[i_{1}, \ldots, i_{k}\right] \in\{0,1\}^{k}$.

- The subdivision scheme $S=\left(S_{0}, S_{1}\right)$ generates a C^{0}-limit function iff the difference scheme $D=\left(D_{0}, D_{1}\right)$ is contractive, i.e., iff

$$
D_{\mathcal{I}}=0 \quad \text { for any infinite sequence } \mathcal{I} \in\{0,1\}^{\mathbb{N}}
$$

- The difference scheme is not contractive if

$$
\varrho\left(D_{l}\right) \geq 1 \quad \text { for some index vector } l .
$$

- The difference scheme is contractive if there exists $N \in \mathbb{N}$ such that

$$
\left\|D_{l}\right\|<1 \text { for all index vectors } / \text { of length } N .
$$

The four-point scheme I

Subdivision scheme S :

$$
S_{0}=\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
-\omega & \omega^{\prime} & \omega^{\prime} & -\omega & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & -\omega & \omega^{\prime} & \omega^{\prime} & -\omega & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & -\omega & \omega^{\prime} & \omega^{\prime} & -\omega
\end{array}\right], S_{1}=\left[\begin{array}{cccccc}
-\omega & \omega^{\prime} & \omega^{\prime} & -\omega & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & -\omega & \omega^{\prime} & \omega^{\prime} & -\omega & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & -\omega & \omega^{\prime} & \omega^{\prime} & -\omega \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

The four-point scheme I

Difference scheme D :

$$
D_{0}=\left[\begin{array}{ccccc}
-\omega & \frac{1}{2} & \omega & 0 & 0 \\
\omega & \frac{1}{2} & -\omega & 0 & 0 \\
0 & -\omega & \frac{1}{2} & \omega & 0 \\
0 & \omega & \frac{1}{2} & -\omega & 0 \\
0 & 0 & -\omega & \frac{1}{2} & \omega
\end{array}\right], \quad D_{1}=\left[\begin{array}{ccccc}
\omega & \frac{1}{2} & -\omega & 0 & 0 \\
0 & -\omega & \frac{1}{2} & \omega & 0 \\
0 & \omega & \frac{1}{2} & -\omega & 0 \\
0 & 0 & -\omega & \frac{1}{2} & \omega \\
0 & 0 & \omega & \frac{1}{2} & -\omega
\end{array}\right]
$$

The four-point scheme I

Divided difference scheme $\bar{D}:=2 D$:

$$
\bar{D}_{0}=2\left[\begin{array}{ccccc}
-\omega & \frac{1}{2} & \omega & 0 & 0 \\
\omega & \frac{1}{2} & -\omega & 0 & 0 \\
0 & -\omega & \frac{1}{2} & \omega & 0 \\
0 & \omega & \frac{1}{2} & -\omega & 0 \\
0 & 0 & -\omega & \frac{1}{2} & \omega
\end{array}\right], \quad \bar{D}_{1}=2\left[\begin{array}{ccccc}
\omega & \frac{1}{2} & -\omega & 0 & 0 \\
0 & -\omega & \frac{1}{2} & \omega & 0 \\
0 & \omega & \frac{1}{2} & -\omega & 0 \\
0 & 0 & -\omega & \frac{1}{2} & \omega \\
0 & 0 & \omega & \frac{1}{2} & -\omega
\end{array}\right]
$$

The four-point scheme I

Difference scheme D^{2} of divided difference scheme:

$$
D_{0}^{2}=2\left[\begin{array}{cccc}
2 \omega & 2 \omega & 0 & 0 \\
-\omega & \omega^{\prime}-\omega & -\omega & 0 \\
0 & 2 \omega & 2 \omega & 0 \\
0 & -\omega & \omega^{\prime}-\omega & -\omega
\end{array}\right], D_{1}^{2}=2\left[\begin{array}{cccc}
-\omega & \omega^{\prime}-\omega & -\omega & 0 \\
0 & 2 \omega & 2 \omega & 0 \\
0 & -\omega & \omega^{\prime}-\omega & -\omega \\
0 & 0 & 2 \omega & 2 \omega
\end{array}\right]
$$

The four-point scheme I

- The FPS generates C^{1}-limit functions iff the difference scheme D^{2} of the divided difference scheme is contractive.
- Determining the maximal set $\left(0, \omega_{\text {sup }}\right)$ providing C^{1} is a challenge:
- '87, based on level $n=2, \omega_{\text {sup }} \geq \frac{1}{8}=.125$
- '92, based on level $n=3, \omega_{\text {sup }} \geq \frac{\sqrt{5}-1}{8} \approx .155$
- '96, based on level $n=22, \omega_{\text {sup }} \geq .188$

The four-point scheme I

- The FPS generates C^{1}-limit functions iff the difference scheme D^{2} of the divided difference scheme is contractive.
- Determining the maximal set $\left(0, \omega_{\text {sup }}\right)$ providing C^{1} is a challenge:
- '87, based on level $n=2, \omega_{\text {sup }} \geq \frac{1}{8}=.125$
- '92, based on level $n=3, \omega_{\text {sup }} \geq \frac{\sqrt{5}-1}{8} \approx .155$
- '96, based on level $n=22, \omega_{\text {sup }} \geq .188$
- '06, based on refined analytic approach,

$$
\omega_{\text {sup }}:=\frac{(27+3 \sqrt{105})^{2 / 3}-6}{12(27+3 \sqrt{105})^{1 / 3}} \approx 0.192729 .
$$

Breadth-first vs. depth-first search

D is contractive if there exists a level N with contractive nodes,

$$
\left\|D_{l}\right\|<1 \text { for all I of length } N
$$

i.e., if a breadth first search terminates.

Breadth-first vs. depth-first search

D is contractive if there exists a proper subtree \mathcal{T} with contractive nodes, i.e., if a depth first search terminates.

For $\omega=0.188$, reduction from $4,000,000$ to 159 matrices.

Bad news I

The problem of checking a pair of matrices $\left(D_{0}, D_{1}\right)$ for contractivity is undecidable.

Hölder continuity and the joint spectral radius

- The rate of convergence of $\left\|D_{l}\right\| \rightarrow 0$ as $\# I \rightarrow \infty$ determines the Hölder continuity of the limit function f.
- The joint spectral radius of $\left(D_{0}, D_{1}\right)$ is defined by

$$
\operatorname{jsr}\left(D_{0}, D_{1}\right):=\sup _{n \in \mathbb{N}} \sup _{I \in\{0,1\}^{n}} \sqrt[n]{\varrho\left(D_{l}\right)}
$$

- The limit function f is C^{0} if

$$
\operatorname{jsr}\left(D_{0}, D_{1}\right)<1
$$

- The limit function f is $C^{0, \alpha}$ if

$$
\operatorname{jsr}\left(D_{0}, D_{1}\right)<2^{-\alpha}
$$

Basic observations

- For any $I \in\{0,1\}^{n}$,

$$
\sqrt[n]{\varrho\left(D_{l}\right)} \leq \operatorname{jsr}\left(D_{0}, D_{1}\right)
$$

- For any norm,

$$
\operatorname{jsr}\left(D_{0}, D_{1}\right) \leq \max _{I \in\{0,1\}^{n}} \sqrt[n]{\left\|D_{I}\right\|}
$$

- There exists a norm $\|\cdot\|_{*}$ on \mathbb{R}^{d} with

$$
\operatorname{jsr}\left(D_{0}, D_{1}\right)=\max \left\{\left\|D_{0}\right\|_{*},\left\|D_{1}\right\|_{*}\right\}
$$

- For symmetric subdivision schemes and (2×2)-matrices D_{0}, D_{1},

$$
\operatorname{jsr}\left(D_{0}, D_{1}\right)=\max \left\{\varrho\left(D_{0}\right), \sqrt{\varrho\left(D_{0} D_{1}\right)}\right\}
$$

Corner cutting

Corner cutting

$$
D_{0}=\left[\begin{array}{cc}
1-2 \omega & 0 \\
\omega & \omega
\end{array}\right], \quad D_{1}=\left[\begin{array}{cc}
\omega & \omega \\
0 & 1-2 \omega
\end{array}\right]
$$

The joint spectral radius is given by

$$
\operatorname{jrr}\left(D_{0}, D_{1}\right)=\max \left\{1-2 \omega, \omega / 2+\sqrt{\omega-7 \omega^{2} / 4}\right\}
$$

The four-point scheme II

For the four-point scheme with parameter

- $\omega \in[0,1 / 20]$, it is

$$
\operatorname{jsr}\left(D_{0}^{2}, D_{1}^{2}\right)=\varrho\left(D_{0}^{2}\right)
$$

- $\omega \in[1 / 10,2 / 10]$, it is

$$
\operatorname{jsr}\left(D_{0}^{2}, D_{1}^{2}\right)=\sqrt{\varrho\left(D_{0}^{2} D_{1}^{2}\right)}
$$

The upper bound $\omega_{\text {sup }}$ is obtained from solving $\varrho\left(D_{0}^{2} D_{1}^{2}\right)=1$.

Bad news II

- The finiteness conjecture

$$
\operatorname{jsr}\left(D_{0}, D_{1}\right)=\sqrt[n]{\varrho\left(D_{l}\right)} \quad \text { for some } I \in\{0,1\}^{n}
$$

was disproven.

Bad news II

- The finiteness conjecture

$$
\operatorname{jsr}\left(D_{0}, D_{1}\right)=\sqrt[n]{\varrho\left(D_{l}\right)} \quad \text { for some } I \in\{0,1\}^{n}
$$

was disproven.

- The jsr-problem is np-complete with respect to accuracy and dimension.
- In general, the numerical computation of $\operatorname{jsr}\left(D_{0}, D_{1}\right)$ with accuracy ε requires

$$
O\left(\left(\operatorname{dim} D_{0}\right)^{1 / \varepsilon}\right)
$$

operations.

Good news

- So far, no counterexamples to the finiteness conjecture have been encountered in practice.
- Robust algorithm for verifying

$$
\operatorname{jsr}\left(D_{0}, D_{1}\right)=\sqrt[n]{\varrho\left(D_{l}\right)}
$$

for given I is available (implementation in progress).

Exact evaluation of the JSR

- Determine a candidate I for the finiteness conjecture,

$$
\operatorname{jsr}\left(D_{0}, D_{1}\right)=\sqrt[n]{\varrho\left(D_{l}\right)}
$$

- Let

$$
\tilde{D}_{i}=\frac{D_{i}}{j \operatorname{sr}\left(D_{0}, D_{1}\right)}
$$

- Verifying the conjecture is equivalent to showing

$$
\operatorname{jsr}\left(\tilde{D}_{0}, \tilde{D}_{1}\right)=1
$$

Exact evaluation of the JSR - Method 1

- Start with unit cube M^{0}.
- If the recursion

$$
M^{k+1}=\operatorname{conv}\left(\tilde{D}_{0} M^{k}, \tilde{D}_{1} M^{k}\right)
$$

with stopping criterion

$$
M^{k+1} \subseteq M^{k}
$$

terminates, then the conjecture is verified.

- The set M^{k} defines the unit ball wrt. the optimal norm $\|\cdot\|_{*}$.

Exact evaluation of the JSR - Method 2

- Conisder tree of matrix products with
- edges of type

$$
D_{0}, D_{1},\left\{D_{1}^{n}: n \in \mathbb{N}_{0}\right\}
$$

- set-valued nodes of type

$$
\mathcal{D}=\left\{D_{J} D_{I}^{n} D_{K}: n \in \mathbb{N}_{0}\right\}
$$

- If a depth-first search with stopping criterion

$$
\max _{D \in \mathcal{D}}\|D\|<1
$$

terminates, then the conjecture is verified.

Conclusion

- The matrix approach provides an alternative to the Laurent series formalism.
- From a theoretical point of view, both methods are equivalent.
- For special purposes, one approach may be more efficient than the other.
- In general, sharp results are beyond reach, and even good estimates may be very hard to determine.
- In practise, sharp results are within reach.

