Analysis I für M, LaG/M, Ph 5.Tutorium

Fachbereich Mathematik
Dr. Robert Haller-Dintelmann
David Bücher
Christian Brandenburg

Sommersemester 2010 14.05.2010

Tutorium

Aufgabe T1

Es sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in \mathbb{R} . Beweisen oder widerlegen Sie die folgenden Aussagen:

- (a) $(a_n)_{n\in\mathbb{N}}$ hat genau einen Häufungspunkt $\Longrightarrow (a_n)_{n\in\mathbb{N}}$ ist beschränkt und konvergent.
- (b) $(a_n)_{n\in\mathbb{N}}$ ist beschränkt und hat genau einen Häufungspunkt $\Longrightarrow (a_n)_{n\in\mathbb{N}}$ ist konvergent.
- (c) $(a_n)_{n\in\mathbb{N}}$ ist konvergent $\Longrightarrow (a_n)_{n\in\mathbb{N}}$ ist beschränkt und hat genau einen Häufungspunkt.
- (d) $(a_n)_{n\in\mathbb{N}}$ ist beschränkt $\Longrightarrow (a_n)_{n\in\mathbb{N}}$ ist konvergent und hat genau einen Häufungspunkt.
- (e) $(a_n)_{n\in\mathbb{N}}$ ist konvergent und hat genau einen Häufungspunkt $\Longrightarrow (a_n)_{n\in\mathbb{N}}$ ist beschränkt.
- (f) $(a_n)_{n\in\mathbb{N}}$ ist konvergent und beschränkt $\Longrightarrow (a_n)_{n\in\mathbb{N}}$ hat genau einen Häufungspunkt.

Aufgabe T2 (Teilfolgen)

Zeigen Sie: Eine Folge (a_n) ist genau dann beschränkt, wenn jede ihrer Teilfolgen eine konvergente Teilfolge enthält.

Aufgabe T3 (Cauchy-Kriterium)

(a) Zeigen Sie mit Hilfe des Cauchy-Kriteriums, dass die Folge

$$a_n := 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

divergiert.

(b) Zeigen Sie mit Hilfe des Cauchy-Kriteriums, dass die Folge

$$b_n := 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^{n-1}}{n}$$

konvergiert.