Analysis I für M, LaG/M, Ph 1.Tutorium

Fachbereich Mathematik
Dr. Robert Haller-Dintelmann
David Bücher
Christian Brandenburg

Sommersemester 2010 15./16.04.2010

Tutorium

Aufgabe T1 (Abbildungen)

Seien B die Bücher der Mathematik-Bibliothek und P die Menge der Personen, die Bücher ausleihen dürfen. Wir definieren eine "Vorschrift" e, durch e(b) = p, falls die Person $p \in P$ das Buch $b \in B$ ausgeliehen hat. Diskutieren Sie in der Gruppe:

- Wie sieht der maximale Definitionsbereich von e aus?
- Wieso definiert e eine Abbildung auf dem beschriebenen Definitionsbereich?
- Wie sieht der Wertebereich von e aus?
- Wann ist e injektiv, wann surjektiv?
- Wie könnte man erreichen, dass e für alle $b \in B$ sinnvoll definiert ist?

Lösung: Die Vorschrift e lässt sich auf der Menge $D(e) := \{b \in B : \text{Buch } b \text{ ist ausgeliehen}\}$ definieren. Dadurch wird e zu einer Abbildung, da jedem Buch aus D(e) genau eine Person zugeordnet wird. Ein Buch kann ja nur von höchstens einer Person ausgeliehen werden.

Der Wertebereich ist dann gegeben durch

 $W(e) = \{ p \in P : \text{Person } p \text{ hat mindestens ein Buch ausgeliehen} \}.$

Die Funktion e ist injektiv, wenn keine Person zwei oder mehr Bücher ausgeliehen hat. Das heißt, es gibt keine zwei verschiedenen Bücher, die den gleichen Funktionswert haben. Die Funktion e ist surjektiv, wenn jede Person aus der Menge P mindestens ein Buch ausgeliehen hat.

Damit e für alle Bücher der Bibliothek definiert ist, kann man zum Beispiel der Wertemenge P ein weiteres Element hinzufügen. Es bezeichne dazu m die Mathematikbibliothek. Wir erweitern e durch die Definition e(b) := m, falls keine Person das Buch ausgeliehen hat. Sozusagen hat dann die Bibliothek selbst das Buch "entliehen". Damit ist e auf ganz B sinnvoll definiert.

Aufgabe T2 (Mengen und Aussagen)

Es seien
$$M_{ij} \subset M$$
 für $i \in \{1, ..., n\}, j \in \{1, ..., m\}$.

(a) Zeigen Sie

$$\bigcup_{i=1}^n \bigcap_{j=1}^m M_{ij} \subset \bigcap_{j=1}^m \bigcup_{i=1}^n M_{ij}.$$

(b) Geben Sie ein Beispiel an mit $\bigcup_{i=1}^n \bigcap_{j=1}^m M_{ij} \neq \bigcap_{j=1}^m \bigcup_{i=1}^n M_{ij}$.

Lösung:

(a) Behauptung:
$$\bigcup_{i=1}^{n} \bigcap_{j=1}^{m} M_{ij} \subset \bigcap_{j=1}^{m} \bigcup_{i=1}^{n} M_{ij}$$

Beweis: Sei $x \in \bigcup_{i=1}^{n} \bigcap_{j=1}^{m} M_{ij}$.

$$\Rightarrow$$
 es gibt ein $i_0 \in \{1, ..., n\}$ so dass $x \in \bigcap_{j=1}^m M_{i_0 j}$

$$\Rightarrow x \in M_{i_0 j}$$
 für alle $j \in \{1, ..., m\}$

$$\Rightarrow x \in \bigcup_{i=1}^{n} M_{ij} \text{ für alle } j \in \{1, \dots, m\}$$
$$\Rightarrow x \in \bigcap_{j=1}^{m} \bigcup_{i=1}^{n} M_{ij}$$

(b) Setze n=m=2 und $\{a\}=M_{11}=M_{21}$ und $\{b\}=M_{12}=M_{22}.$ Dann gilt:

$$\bigcup_{i=1}^{n} \bigcap_{j=1}^{m} M_{ij} = (M_{11} \cap M_{12}) \cup (M_{21} \cap M_{22})$$

$$= \emptyset \cup \emptyset$$

$$= \emptyset,$$

aber

$$\bigcap_{j=1}^{m} \bigcup_{i=1}^{n} M_{ij} = (M_{11} \cup M_{12}) \cap (M_{21} \cup M_{22})$$

$$= \{a, b\} \cap \{a, b\}$$

$$= \{a, b\}$$

$$\neq \emptyset.$$

Aufgabe T3 (Aussagen)

Sie haben gelernt, dass zwei Aussagen p und q äquivalent sind, wenn sie gleichzeitig war oder gleichzeitig falsch sind. Aus den beiden Aussagen wird also die neue Aussage $p \Leftrightarrow q$.

- (a) Schreiben Sie die Definition von $p \Leftrightarrow q$ als Wahrheitstafel.
- (b) Schreiben Sie die Definition der Äquivalenz als formale Aussage mittels der Symbole p, q, und, oder und nicht.
- (c) Beweisen Sie die Aussage aus b) mittels einer Wahrheitstafel.

Lösung:

(a) Aus dem Skript ergibt sich sofort

p	q	$p \Leftrightarrow q$
w	w	W
w	f	f
f	w	f
f	f	W

(b) $p \Leftrightarrow q$ bedeutet formal aufgeschrieben:

(p und q) oder (nicht p und nicht q)

	p	q	nicht p	nicht q	p und q	nicht p und nicht q	$p \Leftrightarrow q$
(c)	W	w	f	f	W	f	W
	w	f	f	W	f	f	f
	f	w	W	f	f	f	f
	f	f	W	W	f	W	W

Aufgabe T4 (Aussagen)

(a) Was ist die intuitive Bedeutung der folgenden Aussage:

$$(p \Leftrightarrow q) \Leftrightarrow ((p \Rightarrow q) \text{ und } (q \Rightarrow p))$$

(b) Beweisen Sie es mittels Wahrheitstafel.

Lösung:

(a) p ist äquivalent zu q genau dann, wenn q aus p folgt und p aus q folgt.

	p	q	$p \Leftrightarrow q$	$p \Rightarrow q$	$q \Rightarrow p$	$p \Rightarrow q \text{ und } q \Rightarrow p$	$(p \Leftrightarrow q) \Leftrightarrow ((p \Rightarrow q) \text{ und } (q \Rightarrow p))$
	W	w	W	W	W	W	W
(b)	w	f	f	f	W	f	W
	f	w	f	W	f	f	W
	f	f	W	W	W	W	W