Fachbereich Mathematik
Prof. Dr. W. Trebels
Dr. V. Gregoriades
Dr. A. Linshaw
08-07-2010

13th Homework Sheet Analysis II (engl.)
 Summer Semester 2010

(H13.1)

1. Prove that if f is a C^{2}-function from \mathbb{R}^{3} to \mathbb{R} then $\nabla \times(\nabla f)=0$. (This is property (c) after Definition 2.3 Chap. IX for C^{2} functions instead of scalar C^{1} functions).
2. Is the vector function $F=\left(F_{1}, F_{2}, F_{3}\right): \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}: F(x, y, z)=(y,-x, 0)$ a gradient field?

(H13.2)

1. Compute the integral

$$
I:=\int_{-1}^{1} \int_{2}^{3} \frac{y}{\log (x)} d x d y
$$

2. Let $R:=[a, b] \times[c, d]$ and $f: R \rightarrow \mathbb{R}$ be a continuous function. For $a<x<b$ and $c<y<d$, we define

$$
F(x, y):=\int_{a}^{x} \int_{c}^{y} f(t, s) d s d t
$$

Prove that $\frac{\partial^{2} F}{\partial x \partial y}=\frac{\partial^{2} F}{\partial y \partial x}$.
(H13.3)

1. Which of the following sets have Lebesgue measure zero?

$$
\mathbb{Q},(0,1) \times(0,1), \text { the unit circle } C:=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\} .
$$

Hint. For the set $(0,1) \times(0,1)$ you may take for granted that if $[a, b] \times[c, d] \subseteq \cup_{i=1}^{n} R_{i}$ where R_{i} are rectangles, then $\sum_{i=1}^{n}\left|R_{i}\right| \geq(b-a)(d-c)$.
2. Give the example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is discontinuous at infinitely many $x \in \mathbb{R}$ but it is almost everywhere continuous. Hint. Look for such an example in Section 1 of Chapter III of the Script.

