Fachbereich Mathematik
Prof. Dr. W. Trebels
Dr. V. Gregoriades
Dr. A. Linshaw

17-06-2010

10th Homework Sheet Analysis II (engl.)
 Summer Semester 2010

(H10.1)
Consider the surface

$$
S:=\left\{(x, y, z): x^{3}+3 y^{2}+8 x z^{2}-3 z^{3} y=1\right\}
$$

and a point $\left(x_{0}, y_{0}, z_{0}\right) \in S$. Give conditions for the triple $\left(x_{0}, y_{0}, z_{0}\right)$ under which there is an open set $W \subseteq \mathbb{R}^{2}$ which contains $\left(x_{0}, y_{0}\right)$ and there is a differentiable function $\varphi: W \rightarrow \mathbb{R}$ such that $\varphi\left(x_{0}, y_{0}\right)=z_{0}$ and $(x, y, \varphi(x, y)) \in S$ for all $(x, y) \in S$.

Advice. When we say "give conditions for $\left(x_{0}, y_{0}, z_{0}\right)$ " it is enough to say for example that $z_{0} \neq x_{0} y_{0}$; (look also the hint of H9.3 and the solution of G10.1).
(H10.2)
Prove that there is some open set $W \subseteq \mathbb{R}^{2}$ such that $(1,1) \in W$ and that there are differentiable functions $u \equiv u(x, y)$ and $v \equiv v(x, y)$ defined on W with $u(1,1)=v(1,1)=1$ which satisfy the following system of equations

$$
\begin{aligned}
x u+y v u^{2} & =2, \\
x u^{3}+y^{2} v^{4} & =2 .
\end{aligned}
$$

Compute the partial derivative $\frac{\partial u}{\partial x}(1,1)$.

(H10.3)

Define the sets

$$
A=\left\{(x, y, z) \in \mathbb{R}^{3}: z^{2}+x y-1=0\right\}, B=\left\{(x, y, z) \in \mathbb{R}^{3}: z^{2}+x^{2}-y^{2}-1=0\right\}
$$

and suppose that $\left(x_{0}, y_{0}, z_{0}\right) \in A \cap B$. Find sufficient conditions for $\left(x_{0}, y_{0}\right)$ under which there is an open $W \subseteq \mathbb{R}$ with $z_{0} \in W$ and differentiable functions $f, g: W \rightarrow \mathbb{R}$ such that $f\left(z_{0}\right)=x_{0}, g\left(z_{0}\right)=y_{0}$ and $(f(z), g(z), z) \in A \cap B$ for all $z \in W$. Compute the derivatives $f^{\prime}(z)$ and $g^{\prime}(z)$ with respect to $z, f(z), g(z)$, for all $z \in W$.

Hint. Treat the pair (x, y) as a function of z. You need to apply the Implicit Function Theorem (Theorem 2.1 Chap. VIII) to some function $F(z, x, y)=\left(F_{1}(z, x, y), F_{2}(z, x, y)\right)$.

