Fachbereich Mathematik
Prof. Dr. W. Trebels
Dr. V. Gregoriades
Dr. A. Linshaw

02-06-2010

8th Homework Sheet Analysis II (engl.) Summer Semester 2010

(H8.1) Let $f(x, y)=x^{3}+y^{2}-3 x-4 y+1$, and let D be the rectangle $\{(x, y) \mid 0 \leq$ $x \leq 3,0 \leq y \leq 3\}$ whose vertices are $(0,0),(3,0),(0,3)$ and $(3,3)$.

1. Find all critical points of f inside D.
2. Find the extreme values of f along the boundary of D. You need to consider the values of f along each line segment and at each vertex of the boundary of D.
3. Find the global maximum and minimum values of f on D and indicate the point(s) in D where these values are achieved.
(H8.2)
4. Find a function $f(x, y)$ such that $(1,2)$ is a critical point, $H_{f}(1,2)=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$, and f achieves a global maximum at $(1,2)$.
5. Find a function $g(x, y)$ with a critical point at $(1,2)$ with $H_{g}(1,2)=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$, such that g has no local extremum at $(1,2)$.
6. Find a function $h(x, y)$ which is differentiable on all of \mathbb{R}^{2}, which has a local minimum at every point along the circle $x^{2}+y^{2}=1$.
(H8.3)
Define $f(0,0)=0$, and

$$
f(x, y)=x^{2}+y^{2}-2 x^{2} y-\frac{4 x^{6} y^{2}}{\left(x^{4}+y^{2}\right)^{2}}, \quad(x, y) \neq(0,0)
$$

1. Prove that for all $(x, y) \in \mathbb{R}^{2}, 4 x^{4} y^{2} \leq\left(x^{4}+y^{2}\right)^{2}$. Conclude that f is continuous on all of \mathbb{R}^{2}.
2. For $0<\theta<2 \pi, t \in \mathbb{R}$, define $g_{\theta}(t)=f(t \cos \theta, t \sin \theta)$. Show that $g_{\theta}(0)=0$, $g_{\theta}^{\prime}(0)=0$, and $g_{\theta}^{\prime \prime}(0)=2$. Each g_{θ} therefore has a strict local minimum at $t=0$. In other words, the restriction of f to each line through $(0,0)$ has a local minimum at $(0,0)$.
3. Show that $(0,0)$ is not a local minimum for f, since $f\left(x, x^{2}\right)=-x^{4}$.
