Fachbereich Mathematik
Prof. Dr. W. Trebels
Dr. V. Gregoriades
Dr. A. Linshaw

7th Homework Sheet Analysis II (engl.) Summer Semester 2010

(H7.1) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function $f(x, y)=x^{3}+y^{3}+\frac{3}{2} x^{2}-6 x-3 y+1$.

1. Compute grad $f(x, y)$, and find all critical points of f.
2. Compute the Hessian of f.
3. Determine if f has a local minimum, local maximum, or neither at each critical point.
(H7.2) Recall from Example 2.7, p. 167 of the script that a funtion $f: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}$ is called positively homogeneous of degree $\alpha \in \mathbb{R}$ if $f(t x)=t^{\alpha} f(x)$ for all $x \in \mathbb{R}^{n} \backslash\{0\}$ and $t \in(0, \infty)$.
4. Prove Euler's relation

$$
\langle\operatorname{grad} f(x), x\rangle=\alpha f(z) .
$$

2. Give an example of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ which is positively homogeneous of degree 3 , but is not a polynomial function.

(H7.3)

1. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a k times differentiable function. Let $T_{k}(f): \mathbb{R}^{n} \rightarrow \mathbb{R}$ denote the k th order Taylor approximation to f at the origin in \mathbb{R}^{n}. Prove that $f(x)=T_{k}(f)(x)$ for all $x \in \mathbb{R}^{n}$ if and only if f is a polynomial function of degree $d \leq k$.
2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable to all orders. Show that the secondorder Taylor polynomial $T_{2}(g \circ f)$ for the composition $g \circ f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ at the point $a \in R^{n}$, can be obtained by substituting the Taylor polynomial for $T_{2}(f)$ into the (single-variable) Taylor polynomial $T_{2}(g)$, and then collecting the terms of degree at most 2 .
3. Assuming that for all k we can compute the Taylor polynomial $T_{k}(g \circ f)$ of a composite function $g \circ f$ by using substitution as above, compute the fourth order Taylor polynomial for the function $f(x, y)=e^{x+x y+x^{2} y^{2}}$ at $(0,0)$.
