Fachbereich Mathematik Prof. Dr. W. Trebels Dr. V. Gregoriades Dr. A. Linshaw

21-05-2010

7th Homework Sheet Analysis II (engl.) Summer Semester 2010

(H7.1) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be the function $f(x, y) = x^3 + y^3 + \frac{3}{2}x^2 - 6x - 3y + 1$.

1. Compute grad f(x, y), and find all critical points of f.

- 2. Compute the Hessian of f.
- 3. Determine if f has a local minimum, local maximum, or neither at each critical point.

(H7.2) Recall from Example 2.7, p. 167 of the script that a function $f : \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ is called positively homogeneous of degree $\alpha \in \mathbb{R}$ if $f(tx) = t^{\alpha}f(x)$ for all $x \in \mathbb{R}^n \setminus \{0\}$ and $t \in (0, \infty)$.

1. Prove Euler's relation

$$\langle grad \ f(x), x \rangle = \alpha f(z).$$

2. Give an example of a function $f : \mathbb{R}^2 \to \mathbb{R}$ which is positively homogeneous of degree 3, but is *not* a polynomial function.

(H7.3)

- 1. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a k times differentiable function. Let $T_k(f) : \mathbb{R}^n \to \mathbb{R}$ denote the kth order Taylor approximation to f at the origin in \mathbb{R}^n . Prove that $f(x) = T_k(f)(x)$ for all $x \in \mathbb{R}^n$ if and only if f is a polynomial function of degree $d \leq k$.
- 2. Let $f : \mathbb{R}^2 \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ be differentiable to all orders. Show that the secondorder Taylor polynomial $T_2(g \circ f)$ for the composition $g \circ f : \mathbb{R}^2 \to \mathbb{R}$ at the point $a \in \mathbb{R}^n$, can be obtained by substituting the Taylor polynomial for $T_2(f)$ into the (single-variable) Taylor polynomial $T_2(g)$, and then collecting the terms of degree at most 2.
- 3. Assuming that for all k we can compute the Taylor polynomial $T_k(g \circ f)$ of a composite function $g \circ f$ by using substitution as above, compute the fourth order Taylor polynomial for the function $f(x, y) = e^{x+xy+x^2y^2}$ at (0, 0).