Fachbereich Mathematik
Prof. Dr. W. Trebels
Dr. V. Gregoriades
Dr. A. Linshaw

20-05-2010

6th Homework Sheet Analysis II (engl.)
 Summer Semester 2010

(H6.1)
Which of the following statements are correct? (You have to give a complete justification. If a statement is correct you can refer to a theorem given in the lecture and if a statement is false you can refer to a counterexample given in the lecture/tutorials/exercises/homework.)

Let U be an open subset of \mathbb{R}^{2} and let $f: U \rightarrow \mathbb{R}$ be a function.

1. If f is differentiable, then f is continuous.
2. If all partial derivatives of f exist, then f is differentiable.
3. If f is differentiable, then all partial derivatives of f exist.
4. If the partial derivatives of f exist and are continuous in a neighborhood of a point x, then f is differentiable at x.
5. If f is differentiable, then all partial derivatives of f are continuous.
6. If f is not differentiable, then f is not continuous.

(H6.2)

1. We are given the functions $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}: f(x, y, z)=\left(\cos \left(x^{3}\right), y z\right)$ and $g: \mathbb{R}^{2} \rightarrow$ $\mathbb{R}^{2}: g(a, b)=\left(e^{a^{2}+b^{2}}, a b\right)$. Verify the Chain Rule (Theorem 2.1 Chap. VII) for the composition $h: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}: h=g \circ f$ of the functions f and g. [This means that you have to compute the derivatives of f, g, h and check that for all $\vec{x} \in \mathbb{R}^{3}$ we have that $D h(\vec{x})=D g(f(\vec{x})) \cdot D f(\vec{x})]$
2. Find all natural numbers $n \geq 2$ such that the function $N(n) \equiv N: \mathbb{R}^{n} \backslash\{(0,0)\} \rightarrow \mathbb{R}: N(\vec{x})=\frac{1}{\|\vec{x}\|^{n-2}}$ satisfies the equation $\Delta N=0$. (Recall that Δ is the Laplace operator, see Example 3.4 (a) Chap. VII).
(H6.3)
3. Prove Corollary 3.3 Chap. VII:

Let $U \subseteq \mathbb{R}^{n}$ be open, $i_{1}, \ldots, i_{k} \in\{1, \ldots, n\}$ and let $f \in C^{k}(U, \mathbb{R})$ for some $k \in \mathbb{N}$. Then

$$
\frac{\partial}{\partial x_{i_{k}}} \cdots \frac{\partial f}{\partial x_{i_{1}}}=\frac{\partial}{\partial x_{i_{\pi(k)}}} \cdots \frac{\partial f}{\partial x_{i_{\pi(1)}}}
$$

for every permutation $\pi:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\}$.
Hint. Use induction on k.
(Recall that a function $\pi:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\}$ is called a permutation if it is injective and surjective).
2. Prove that the function $D:\left(C^{1}([0,1]),\|\cdot\|_{\infty}\right) \rightarrow\left(C([0,1]),\|\cdot\|_{\infty}\right)$ such that $D(f)=f^{\prime}$ is not continuous. (Recall that $\|f\|_{\infty}=\{|f(x)|: x \in[0,1]\}$).
Hint. For all $n \in \mathbb{N}$ take the function $p_{n}(x)=\frac{1}{n} \cdot x^{n}$ for $0 \leq x \leq 1$.

