Fachbereich Mathematik Prof. Dr. W. Trebels Dr. V. Gregoriades Dr. A. Linshaw

12-05-2010

5th Homework Sheet Analysis II (engl.) Summer Semester 2010

(H5.1)

- 1. Find sets $A_i, B_i \subseteq \mathbb{R}^2, i = 1, 2$ such that:
 - (a) A_1, B_1 are connected and $A_1 \cup B_1$ is not connected.
 - (b) A_2, B_2 are connected and $A_2 \cap B_2$ is not connected, (and also $A_2 \cap B_2 \neq \emptyset$).

It is enough to give a sketch of those sets.

2. Prove that a metric space M is connected if and only if for all $A \subseteq M$ such that A is open and closed we have that either $A = \emptyset$ or A = M.

(H5.2)

- 1. Compute grad $f(x_0, y_0, z_0)$ for arbitrary $x_0, y_0, z_0 \in \mathbb{R}$ where f is given by $f(x, y, z) = x \cdot e^{-x^2 y^2 z^2}, x, y, z \in \mathbb{R}$.
- 2. Given $u = (1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3}) \in \mathbb{R}^3$ and $f(x, y, z) = z^2 x + y^3$, $x, y, z \in \mathbb{R}$, compute the directional derivative $D_u f(1, 1, 2)$.
- 3. Let the function $f : \mathbb{R}^2 \to \mathbb{R}$ which is defined as follows: $f(x,y) = (x^2 + y^2) \cdot \sin(\frac{1}{\sqrt{x^2 + y^2}})$ if $(x,y) \neq (0,0)$ and f(0,0) = 0. Prove the following.
 - (a) The partial derivatives $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ exist on every point $(x_0, y_0) \in \mathbb{R}^2$.
 - (b) The partial derivatives $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ are not continuous.
 - (c) The function f is differentiable.

(H5.3)

Define the function $f : \mathbb{R}^2 \to \mathbb{R}$ such that $f(x,y) = \frac{y^3}{x^2 + y^2}$ if $(x,y) \neq (0,0)$ and f(0,0) = 0. Prove that (a) the function f is continuous, (b) every directional derivative $D_u f(0,0)$ (for $u \in \mathbb{R}^2$ with $||u||_2 = 1$) exists and (c) the function f is not differentiable at (0,0).