Fachbereich Mathematik
Prof. Dr. W. Trebels
Dr. V. Gregoriades
Dr. A. Linshaw

12-05-2010

5th Homework Sheet Analysis II (engl.)
 Summer Semester 2010

(H5.1)

1. Find sets $A_{i}, B_{i} \subseteq \mathbb{R}^{2}, i=1,2$ such that:
(a) A_{1}, B_{1} are connected and $A_{1} \cup B_{1}$ is not connected.
(b) A_{2}, B_{2} are connected and $A_{2} \cap B_{2}$ is not connected, (and also $A_{2} \cap B_{2} \neq \emptyset$).

It is enough to give a sketch of those sets.
2. Prove that a metric space M is connected if and only if for all $A \subseteq M$ such that A is open and closed we have that either $A=\emptyset$ or $A=M$.
(H5.2)

1. Compute $\operatorname{grad} f\left(x_{0}, y_{0}, z_{0}\right)$ for arbitrary $x_{0}, y_{0}, z_{0} \in \mathbb{R}$ where f is given by $f(x, y, z)=x \cdot e^{-x^{2}-y^{2}-z^{2}}, x, y, z \in \mathbb{R}$.
2. Given $u=(1 / \sqrt{3}, 1 \sqrt{3}, 1 / \sqrt{3}) \in \mathbb{R}^{3}$ and $f(x, y, z)=z^{2} x+y^{3}, x, y, z \in \mathbb{R}$, compute the directional derivative $D_{u} f(1,1,2)$.
3. Let the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ which is defined as follows: $f(x, y)=\left(x^{2}+y^{2}\right) \cdot \sin \left(\frac{1}{\sqrt{x^{2}+y^{2}}}\right)$ if $(x, y) \neq(0,0)$ and $f(0,0)=0$. Prove the following.
(a) The partial derivatives $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ exist on every point $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$.
(b) The partial derivatives $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ are not continuous.
(c) The function f is differentiable.
(H5.3)
Define the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $f(x, y)=\frac{y^{3}}{x^{2}+y^{2}}$ if $(x, y) \neq(0,0)$ and $f(0,0)=0$. Prove that (a) the function f is continuous, (b) every directional derivative $D_{u} f(0,0)$ (for $u \in \mathbb{R}^{2}$ with $\|u\|_{2}=1$) exists and (c) the function f is not differentiable at $(0,0)$.
