Fachbereich Mathematik Prof. Dr. W. Trebels Dr. V. Gregoriades Dr. A. Linshaw

06-05-2010

4th Homework Sheet Analysis II (engl.) Summer Semester 2010

(H4.1)

- 1. Define the following functions on $\mathbb{R} \times \mathbb{R}$: $d_1(x, y) = |xy|, d_2(x, y) = |x+y|, d_3(x, y) = |x| + |y|, d_4(x, y) = x^2 y^2$. Which properties of a metric on \mathbb{R} do these functions have?
- 2. Equipped with the metric $d(x, y) = \frac{|x-y|}{1+|x-y|}$, \mathbb{R} is a complete metric space. Consider the function $\tilde{d} : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, given by $\tilde{d}(x, y) = \left| \frac{x}{1+|x|} \frac{y}{1+|y|} \right|$. Show that \tilde{d} is a metric on \mathbb{R} . Is (\mathbb{R}, \tilde{d}) a complete metric space?

(H4.2) Regard the set of rational numbers \mathbb{Q} as a metric space with metric d(x, y) = |y - x|. Let *E* be the set of all $p \in \mathbb{Q}$ such that $2 < p^2 < 3$. Show that *E* is closed and bounded in \mathbb{Q} , but *E* is not compact. Is *E* open in \mathbb{Q} ?

(H4.3)

For $1 , define <math>\ell^p$ to be the set of sequences $(a_n)_{n \in \mathbb{N}}$ in \mathbb{C} such that $\sum_{n=1}^{\infty} |a_n|^p$ converges.

1. Prove that for p = 2 and $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ in ℓ^2 , the sequence $\sum_{n=1}^{\infty} a_n b_n$ converges absolutely, and

$$\sum_{n=1}^{\infty} |a_n b_n| \le \left(\sum_{n=1}^{\infty} |a_n|^2\right)^{1/2} \left(\sum_{n=1}^{\infty} |b_n|^2\right)^{1/2}$$

(Hint: Use Holder's inequality).

2. For $(a_n)_{n \in \mathbb{N}}$ in ℓ^p , define

$$||a||_p := \left(\sum_{n=1}^{\infty} |a_n|^p\right)^{1/p}.$$

Prove that this defines a norm on ℓ^p .