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(H4.1)

1. Define the following functions on R X R: dy(z,y) = |zy|, da(x,y) = |z +y|, ds(z,y) =
|z| + |y|, da(z,y) = 2* — y*. Which properties of a metric on R do these functions
have?
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the function d : R xR — R, given by d(z,y) =

2. Equipped with the metric d(z,y) = R is a complete metric space. Consider

. Show that d is a metric
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on R. Is (R, d) a complete metric space?

(H4.2) Regard the set of rational numbers QQ as a metric space with metric d(x,y) =
ly — z|. Let E be the set of all p € Q such that 2 < p*> < 3. Show that F is closed and
bounded in Q, but F is not compact. Is E open in Q7

(H4.3)
For 1 < p < oo, define ¢ to be the set of sequences (a,)nen in C such that > 7 |a,|?
converges.

1. Prove that for p = 2 and (a,,)nen and (b, )nen in €%, the sequence Y7 | a,b, converges
absolutely, and
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(Hint: Use Holder’s inequality).
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2. For (a,)nen in P, define

Prove that this defines a norm on #P.



