Fachbereich Mathematik Prof. Dr. W. Trebels Dr. V. Gregoriades Dr. A. Linshaw

15-04-2010

1st Homework Sheet Analysis II (engl.) Summer Semester 2010

(H1.1)

Compute the following integrals.

1.
$$\int_{0}^{1} x^{2} \cdot e^{x} dx$$

2.
$$\int_{0}^{1/2} \frac{x^{2}}{x^{2} - 1} dx$$

3.
$$\int_0^1 \frac{1}{x^2 + 4} dx$$

(H1.2)

- 1. Suppose that $f : [0, +\infty) \to \mathbb{R}$ is a periodic function with period a > 0 and that f is jump continuous on [0, a] notice that f must be jump continuous on every closed interval I. Prove that for all $k \in \mathbb{N}$ we have that $\int_0^a f(x) dx = \int_{ka}^{(k+1)a} f(x) dx$. Conclude that $\int_0^a f(x) dx = \int_b^{b+a} f(x) dx$ for all b > 0.
- 2. Find all continuous functions $g : [1, \infty) \to \mathbb{R}$ such that the function h_g defined by $h_g(x) := \int_1^x t \cdot g(t) dt (x + x^2), x \in [1, \infty)$, is constant. What are the possible values of any such h_g ?

(H1.3)

- 1. Suppose that the functions $g, h : \mathbb{R} \to \mathbb{R}$ are differentiable and that the function $f : \mathbb{R} \to \mathbb{R}$ is continuous. Prove that the function $F : \mathbb{R} \to \mathbb{R}$ which is defined by $F(x) = \int_{g(x)}^{h(x)} f(t)dt$ satisfies that $F'(x) = f(h(x)) \cdot h'(x) f(g(x)) \cdot g'(x)$ for all $x \in \mathbb{R}$. *Hint.* It is true that $\int_{g(x)}^{h(x)} f(t)dt = \int_{0}^{h(x)} f(t)dt - \int_{0}^{g(x)} f(t)dt$. Then refer to (1) of G1.3.
- 2. Compute the limit $\lim_{x\to 0^+} x \cdot \int_x^1 \frac{e^t}{t} dt$. *Hint.* Try to bound only the quantity e^t , for $x \le t \le 1$.