Fachbereich Mathematik Prof. Dr. W. Trebels Dr. V. Gregoriades Dr. A. Linshaw



15-07-2010

# Repetition Sheet Analysis II (engl.) Summer Semester 2010

# NORMED AND METRIC SPACES

### $(\mathbf{R.1})$

Let (X, d) be a metric space, and let  $V, W \subseteq X$  be disjoint (i.e.  $V \cap W = \emptyset$ ), nonempty and closed. Prove that there exist disjoint open  $V' \subseteq X$  and  $W' \subseteq X$  such that  $V \subseteq V'$ and  $W \subseteq W'$ .

 $(\mathbf{R.2})$ 

1. Prove that the closed unit ball in  $(C([0,1],\mathbb{R}), \|\cdot\|_{\infty})$  is not compact.

2. Let  $T: \ell^2 \to \ell^2$  be defined by

$$T(x_1, x_2, \ldots) = (0, x_1, x_2, \ldots).$$

Prove that T is continuous.

## FOURIER SERIES

(**R.3**) Let  $f : \mathbb{R} \to \mathbb{R}$  be a  $2\pi$ -periodic function defined by  $f(x) = e^{|x|}$  for  $x \in [-\pi, \pi)$ . Find all Fourier coefficients  $\tilde{f}_n$  of f.

## DIFFERENTIABILITY

 $(\mathbf{R.4})$ 

We define  $M \subset \mathbb{R}^2$  by

$$M = \{ (x, y) \in \mathbb{R}^2 : y \le 0 \text{ or } y \ge x^2 \}.$$

Let  $f : \mathbb{R}^2 \to \mathbb{R}$  denote the characteristic function of M, i.e. f(x) = 1 if  $x \in M$  and f(x) = 0 if  $x \notin M$ . Prove that all directional derivatives in (0,0) of f exist. Prove that f is discontinuous in (0,0).

## (R.5) (Chain Rule)

Let  $f(u, v) = \log(u^2 + v^2)$  for  $u^2 + v^2 > 0$ ,  $g_1(x, y) = xy$  and  $g_2(x, y) = \frac{\sqrt{x}}{y}$  for x, y > 0. Define for all x, y > 0

$$\Phi(x,y) = f(g_1(x,y), g_2(x,y)).$$

Compute  $\Phi'(x, y)$  in two different ways:

- (i) compute  $\Phi$  and then differentiate;
- (ii) use the Chain Rule.

(R.6) Let  $f : \mathbb{R}^2 \to \mathbb{R}$  be defined by

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0), \\ 0 & (x,y) = (0,0). \end{cases}$$

Prove the following assertions.

- 1. The partial derivatives  $\partial_j f(0,0)$  exist for j = 1, 2.
- 2. The directional derivative  $D_v f(0,0)$  does not exist if v is not a multiple of the standard unit vectors  $e_1, e_2$ .
- 3. The function f is not differentiable.

#### (R.7) (Taylor series)

Find the third-order Taylor polynomial for  $f(x, y) = e^{2x} \cos(x + y)$  at the point (0, 0).

### (R.8) (Polar coordinates)

The polar coordinates are given by

$$P: U = (0, \infty) \times (0, 2\pi) \to \mathbb{R}^2, \quad P(r, \varphi) = \left(\begin{array}{c} r \cos \varphi \\ r \sin \varphi \end{array}\right)$$

- (i) Prove that P is injective and find the range P(U) of P.
- (ii) Calculate the Jacobi matrix  $P'(r, \varphi)$  of P. What is the rank of  $P'(r, \varphi)$ ?
- (iii) Compute the inverse function  $Q: P(U) \to U$  and its Jacobi matrix Q'(x, y).
- (iv) Calculate the Jacobi matrix of Q once again (without computing Q, but assuming that Q is differentiable) by applying the chain rule to  $P \circ Q = id_{P(U)}$ .

## EXTREMUM PROBLEMS

 $(\mathbf{R.9})$ 

Let

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad f(x, y) = 3x^4 - 4x^2y + y^2.$$

1. Does f attain a local minimum at (0,0)?

2. Prove that the restriction of f to a line through the origin (0,0) has a local minimum.

(R.10) Let  $f(x, y) = 3x - x^3 - 2y^2 + y^4$ . Find all critical points of f, and classify each critical point as a local minimum, local maximum, or neither

(R.11) Using Lagrange multipliers, find the maximum and minimum values of the function f(x, y) = 4x + 6y on the circle  $x^2 + y^2 = 13$ .

# DIFFERENTIATION OF INTEGRALS W/PARAMETERS

(R.12) Let  $h: (0, \infty) \to \mathbb{R}$  be defined by

$$h(x) = \int_{1}^{x^{2}+1} \frac{1}{t} e^{-(xt)^{2}} dt.$$

Calculate the derivative h'.

# **INVERSE/IMPLICIT FUNCTION THEOREM**

#### $(\mathbf{R.13})$

Let  $\|\cdot\|$  be a norm on  $\mathbb{R}^n$ , let  $U \subseteq \mathbb{R}^n$  be open and bounded, and let  $f: \overline{U} \to \mathbb{R}^n$  be continuous. Assume further that f is continuously differentiable on U and that Df(x) is invertible for each  $x \in U$ .

Prove that each  $y \in f(U) \setminus f(\partial U)$  has finitely many inverse images under f.

### (R.14)

1. Define the function  $f : \mathbb{R}^2 \to \mathbb{R}$  as follows

$$f(x,y) = \begin{cases} \frac{x^3 y^2}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

Which of the partial derivatives  $\frac{\partial f}{\partial x}$ ,  $\frac{\partial f}{\partial y}$  is continuous? Compute the derivative of the function  $F: [0,1] \to \mathbb{R}: F(x) = \int_0^1 f(x,y) dy$  at x = 0.

2. Prove that we can solve the following system

$$xy^2 + xzu + yv^2 = 3$$
$$u^3yz + 2xv - u^2v^2 = 2$$

with u and v as differentiable functions of (x, y, v) close to the point (x, y, z, u, v) = (1, 1, 1, 1, 1). Compute the partial derivative  $\frac{\partial v}{\partial y}$  at (1, 1, 1).

# PATHS, LINE INTEGRALS

## $(\mathbf{R.15})$

1. Let  $U \subset \mathbb{R}^n$  be open,  $\gamma : [a, b] \to U$  be a rectifiable path and  $f, g : U \to \mathbb{R}^n$  be continuous vector fields. Prove the following:

(a) 
$$\int_{\gamma} (f+g)(x) \, dx = \int_{\gamma} f(x) \, dx + \int_{\gamma} g(x) \, dx.$$

(b) Let  $\gamma^{-}$  denote the path obtained from  $\gamma$  by reversing the orientation, that is

 $\gamma^-: [a,b] \to U, \quad \gamma^-(t) = \gamma(a+b-t).$ 

Then

$$\int_{\gamma^{-}} f(x) \, dx = -\int_{\gamma} f(x) \, dx.$$

2. Consider the vector field  $f : \mathbb{R}^3 \to \mathbb{R}^3$  given by

$$f(x_1, x_2, x_3) = (x_1, x_2, 0),$$

and the path  $\gamma: [0,1] \to \mathbb{R}^3$ ,  $\gamma(t) = \left(\frac{t^4}{4}, \sin^3\left(\frac{t\pi}{2}\right), 0\right)$ . Evaluate the line integral  $\int_{\gamma} f(x) dx$ .

# INTEGRATION IN HIGHER DIMENSIONS

(R.16) Use Fubini's theorem to evaluate the double integral

$$\int_0^2 \int_0^{2y} e^{x^2 + 1} \, dx \, dy.$$

(R.17)

Define the function  $f : \mathbb{R}^2 \to \mathbb{R}$  as follows

$$f(x,y) = \begin{cases} x^2, & \text{if } x \le y \\ y^2 & \text{if } x > y. \end{cases}$$

Verify that  $\int_0^1 \int_0^1 f(x, y) \, dx \, dy = \int_0^1 \int_0^1 f(x, y) \, dy \, dx.$ 

## (R.18) (The Volume of the Unit Ball)

Calculate the volume  $c_n$  of the *n*-dimensional ball  $B_n := U_1(0) \subseteq \mathbb{R}^n$  with radius 1. Conclude that  $c_n \to 0$  as  $n \to \infty$ .

Hint: Consider the intersections with the (n-1)-dimensional hyperplane  $\mathbb{R}^{n-1} \times \{s\}$  for -1 < s < 1, and use Fubini's Theorem to obtain a recursive formula for  $c_n$ . For the integrals which appear in this formula use the substitution  $s(t) = \sin t$  and integration by parts to obtain again a recursive formula for these integrals. Use mathematical induction and combine all results.

(R.19) Consider the integral of the function f(x, y, z) = xyz over the region  $W \subset \mathbb{R}^3$  lying in the octant  $\{(x, y, z) | x \ge 0, y \ge 0, z \ge 0\}$ , outside the sphere of radius 2, and inside the sphere of radius 3.

1. Using cylindrical coordinates, describe W as the union of two regions  $W_1$  and  $W_2$  of the form

 $\{(r,\varphi,z) \mid a \le r \le b, \ c \le \varphi \le d, \ \gamma_1(r,\theta) \le z \le \gamma_2(r,\theta) \}.$ 

2. Using Part (1), express  $\int_W xyz \ d(x, y, z)$  as a sum of two integrals in cylindrical coordinates. (You don't need to evaluate either integral).

#### $(\mathbf{R.20})$

- 1. Compute the following integrals:  $I_1 = \int_0^1 \frac{1}{x^2 9} dx$ ,  $I_2 = \int_0^1 \frac{2x}{x^2 + 5} dx$ ,  $I_3 = \int_1^\infty \frac{1}{x^2 + 4} dx$ .
- 2. Define the functions  $F_1, F_2$  and  $F_3$  as follows:  $F_1(y) = \int_0^1 \frac{1}{x^2 y^2} dx, y \in [2, 3],$  $F_2(y) = \int_0^1 \frac{2x}{x^2 + y} dx, y \in [2, 3], F_3(y) = \int_1^\infty \frac{1}{x^2 + y^2} dx, y \ge 0.$ Find a simpler form for the functions  $F_1, F_2$  and  $F_3$ .