Fachbereich Mathematik
Prof. Dr. W. Trebels
Dr. V. Gregoriades
Dr. A. Linshaw

15-07-2010

Repetition Sheet Analysis II (engl.)
 Summer Semester 2010

NORMED AND METRIC SPACES

(R.1)

Let (X, d) be a metric space, and let $V, W \subseteq X$ be disjoint (i.e. $V \cap W=\emptyset$), nonempty and closed. Prove that there exist disjoint open $V^{\prime} \subseteq X$ and $W^{\prime} \subseteq X$ such that $V \subseteq V^{\prime}$ and $W \subseteq W^{\prime}$.
(R.2)

1. Prove that the closed unit ball in $\left(C([0,1], \mathbb{R}),\|\cdot\|_{\infty}\right)$ is not compact.
2. Let $T: \ell^{2} \rightarrow \ell^{2}$ be defined by

$$
T\left(x_{1}, x_{2}, \ldots\right)=\left(0, x_{1}, x_{2}, \ldots\right)
$$

Prove that T is continuous.

FOURIER SERIES

(R.3) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a 2π-periodic function defined by $f(x)=e^{|x|}$ for $x \in[-\pi, \pi)$. Find all Fourier coefficients \tilde{f}_{n} of f.

DIFFERENTIABILITY

(R.4)

We define $M \subset \mathbb{R}^{2}$ by

$$
M=\left\{(x, y) \in \mathbb{R}^{2}: y \leq 0 \text { or } y \geq x^{2}\right\}
$$

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ denote the characteristic function of M, i.e. $f(x)=1$ if $x \in M$ and $f(x)=0$ if $x \notin M$. Prove that all directional derivatives in $(0,0)$ of f exist. Prove that f is discontinuous in $(0,0)$.

(R.5) (Chain Rule)

Let $f(u, v)=\log \left(u^{2}+v^{2}\right)$ for $u^{2}+v^{2}>0, g_{1}(x, y)=x y$ and $g_{2}(x, y)=\frac{\sqrt{x}}{y}$ for $x, y>0$. Define for all $x, y>0$

$$
\Phi(x, y)=f\left(g_{1}(x, y), g_{2}(x, y)\right)
$$

Compute $\Phi^{\prime}(x, y)$ in two different ways:
(i) compute Φ and then differentiate;
(ii) use the Chain Rule.
(R.6)

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

Prove the following assertions.

1. The partial derivatives $\partial_{j} f(0,0)$ exist for $j=1,2$.
2. The directional derivative $D_{v} f(0,0)$ does not exist if v is not a multiple of the standard unit vectors e_{1}, e_{2}.
3. The function f is not differentiable.

(R.7) (Taylor series)

Find the third-order Taylor polynomial for $f(x, y)=e^{2 x} \cos (x+y)$ at the point $(0,0)$.

(R.8) (Polar coordinates)

The polar coordinates are given by

$$
P: U=(0, \infty) \times(0,2 \pi) \rightarrow \mathbb{R}^{2}, \quad P(r, \varphi)=\binom{r \cos \varphi}{r \sin \varphi}
$$

(i) Prove that P is injective and find the range $P(U)$ of P.
(ii) Calculate the Jacobi matrix $P^{\prime}(r, \varphi)$ of P. What is the rank of $P^{\prime}(r, \varphi)$?
(iii) Compute the inverse function $Q: P(U) \rightarrow U$ and its Jacobi matrix $Q^{\prime}(x, y)$.
(iv) Calculate the Jacobi matrix of Q once again (without computing Q, but assuming that Q is differentiable) by applying the chain rule to $P \circ Q=i d_{P(U)}$.

EXTREMUM PROBLEMS

(R.9)

Let

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f(x, y)=3 x^{4}-4 x^{2} y+y^{2}
$$

1. Does f attain a local minimum at $(0,0)$?
2. Prove that the restriction of f to a line through the origin $(0,0)$ has a local minimum.
(R.10) Let $f(x, y)=3 x-x^{3}-2 y^{2}+y^{4}$. Find all critical points of f, and classify each critical point as a local minimum, local maximum, or neither
(R.11) Using Lagrange multipliers, find the maximum and minimum values of the function $f(x, y)=4 x+6 y$ on the circle $x^{2}+y^{2}=13$.

DIFFERENTIATION OF INTEGRALS W/PARAMETERS

Let $h:(0, \infty) \rightarrow \mathbb{R}$ be defined by

$$
h(x)=\int_{1}^{x^{2}+1} \frac{1}{t} e^{-(x t)^{2}} d t
$$

Calculate the derivative h^{\prime}.

INVERSE/IMPLICIT FUNCTION THEOREM

(R.13)

Let $\|\cdot\|$ be a norm on \mathbb{R}^{n}, let $U \subseteq \mathbb{R}^{n}$ be open and bounded, and let $f: \bar{U} \rightarrow \mathbb{R}^{n}$ be continuous. Assume further that f is continuously differentiable on U and that $D f(x)$ is invertible for each $x \in U$.

Prove that each $y \in f(U) \backslash f(\partial U)$ has finitely many inverse images under f.

1. Define the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ as follows

$$
f(x, y)= \begin{cases}\frac{x^{3} y^{2}}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Which of the partial derivatives $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ is continuous? Compute the derivative of the function $F:[0,1] \rightarrow \mathbb{R}: F(x)=\int_{0}^{1} f(x, y) d y$ at $x=0$.
2. Prove that we can solve the following system

$$
\begin{aligned}
x y^{2}+x z u+y v^{2} & =3 \\
u^{3} y z+2 x v-u^{2} v^{2} & =2
\end{aligned}
$$

with u and v as differentiable functions of (x, y, v) close to the point $(x, y, z, u, v)=$ $(1,1,1,1,1)$. Compute the partial derivative $\frac{\partial v}{\partial y}$ at $(1,1,1)$.

PATHS, LINE INTEGRALS

(R.15)

1. Let $U \subset \mathbb{R}^{n}$ be open, $\gamma:[a, b] \rightarrow U$ be a rectifiable path and $f, g: U \rightarrow \mathbb{R}^{n}$ be continuous vector fields. Prove the following:
(a) $\int_{\gamma}(f+g)(x) d x=\int_{\gamma} f(x) d x+\int_{\gamma} g(x) d x$.
(b) Let γ^{-}denote the path obtained from γ by reversing the orientation, that is

$$
\gamma^{-}:[a, b] \rightarrow U, \quad \gamma^{-}(t)=\gamma(a+b-t)
$$

Then

$$
\int_{\gamma^{-}} f(x) d x=-\int_{\gamma} f(x) d x
$$

2. Consider the vector field $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{2}, 0\right)
$$

and the path $\gamma:[0,1] \rightarrow \mathbb{R}^{3}, \gamma(t)=\left(\frac{t^{4}}{4}, \sin ^{3}\left(\frac{t \pi}{2}\right), 0\right)$. Evaluate the line integral $\int_{\gamma} f(x) d x$.

INTEGRATION IN HIGHER DIMENSIONS

(R.16) Use Fubini's theorem to evaluate the double integral

$$
\int_{0}^{2} \int_{0}^{2 y} e^{x^{2}+1} d x d y
$$

Define the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ as follows

$$
f(x, y)= \begin{cases}x^{2}, & \text { if } x \leq y \\ y^{2} & \text { if } x>y\end{cases}
$$

Verify that $\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y=\int_{0}^{1} \int_{0}^{1} f(x, y) d y d x$.

(R.18) (The Volume of the Unit Ball)

Calculate the volume c_{n} of the n-dimensional ball $B_{n}:=U_{1}(0) \subseteq \mathbb{R}^{n}$ with radius 1 . Conclude that $c_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Hint: Consider the intersections with the $(n-1)$-dimensional hyperplane $\mathbb{R}^{n-1} \times\{s\}$ for $-1<s<1$, and use Fubini's Theorem to obtain a recursive formula for c_{n}. For the integrals which appear in this formula use the substitution $s(t)=\sin t$ and integration by parts to obtain again a recursive formula for these integrals. Use mathematical induction and combine all results.
(R.19) Consider the integral of the function $f(x, y, z)=x y z$ over the region $W \subset \mathbb{R}^{3}$ lying in the octant $\{(x, y, z) \mid x \geq 0, y \geq 0, z \geq 0\}$, outside the sphere of radius 2 , and inside the sphere of radius 3 .

1. Using cylindrical coordinates, describe W as the union of two regions W_{1} and W_{2} of the form

$$
\left\{(r, \varphi, z) \mid a \leq r \leq b, c \leq \varphi \leq d, \gamma_{1}(r, \theta) \leq z \leq \gamma_{2}(r, \theta)\right\}
$$

2. Using Part (1), express $\int_{W} x y z d(x, y, z)$ as a sum of two integrals in cylindrical coordinates. (You don't need to evaluate either integral).
3. Compute the following integrals: $I_{1}=\int_{0}^{1} \frac{1}{x^{2}-9} d x, I_{2}=\int_{0}^{1} \frac{2 x}{x^{2}+5} d x, I_{3}=\int_{1}^{\infty} \frac{1}{x^{2}+4} d x$.
4. Define the functions F_{1}, F_{2} and F_{3} as follows: $F_{1}(y)=\int_{0}^{1} \frac{1}{x^{2}-y^{2}} d x, y \in[2,3]$, $F_{2}(y)=\int_{0}^{1} \frac{2 x}{x^{2}+y} d x, y \in[2,3], F_{3}(y)=\int_{1}^{\infty} \frac{1}{x^{2}+y^{2}} d x, y \geq 0$.
Find a simpler form for the functions F_{1}, F_{2} and F_{3}.
