10 Integral Theorems in \mathbb{R}^2

The aim of Sections 10 and 11 is the generalization of the fundamental theorem of calculus

$$\int_a^b f'(x) \, dx = f(b) - f(a)$$

and of integration by parts

$$\int_a^b u'v \, dx = -\int_a^b uv' \, dx + uv \Big|_a^b$$

to multidimensional integrals. Here the question arises which (partial) differential operator will replace $\frac{d}{dx}$ and which boundary terms will replace $uv|_a^b$.

Definition

- (1) A mapping $F: B \subset \mathbb{R}^n \to \mathbb{R}^n$ is called a vector field.
- (2) Let $B \subset \mathbb{R}^3$ be open and let $F: B \to \mathbb{R}^3$ be a C^1 -vector field. Then the vector field

$$\operatorname{rot} F: B \to \mathbb{R}^{3}, \quad \operatorname{rot} F(x) = \begin{pmatrix} \partial_{2}F_{3} - \partial_{3}F_{2} \\ \partial_{3}F_{1} - \partial_{1}F_{3} \\ \partial_{1}F_{2} - \partial_{2}F_{1} \end{pmatrix} (x),$$

is called the *rotation* or *curl* of F.

(3) Let $B \subset \mathbb{R}^2$ be open and let $F: B \to \mathbb{R}^2$ be a C^1 -vector field. Then the (scalar-valued) rotation or curl is defined by

$$rot F(x) = \partial_1 F_2(x) - \partial_2 F_1(x) .$$

Note that in this case $\operatorname{rot} F$ equals the third component of $\operatorname{rot} \widetilde{F}$, the rotation of the 3D-vector field

$$\widetilde{F}(x_1, x_2, x_3) = (F_1(x_1, x_2), F_2(x_1, x_2), 0)^T.$$

Examples

- (1) Vector fields occur e.g. as velocity fields in hydrodynamics, as displacement vectors of elastic bodies, as force fields in the theory of electromagnetism and of gravitation.
- (2) For

$$\omega = \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix} \quad \text{and} \quad F(x) = \frac{1}{2} \begin{pmatrix} \omega_2 x_3 - \omega_3 x_2 \\ \omega_3 x_1 - \omega_1 x_3 \\ \omega_1 x_2 - \omega_2 x_1 \end{pmatrix}$$

we get rot $F \equiv \omega$. The velocity field F decribes a rigid body rotation around the axis $\omega \in \mathbb{R}^3$ with angular velocity $\frac{1}{2}|\omega|$, $|\cdot| = ||\cdot||_2$.

(3) Define the vector field F by the scalar C^2 -potential function $\varphi: B \to \mathbb{R}$, i.e., $F(x) = \nabla \varphi(x)$. Then rot $F(x) \equiv 0$; in other words,

gradient fields are irrotational, in short: rot grad = 0.

(4) The vector field $F(x,y) = \frac{\omega}{2}(-y,x)^T$, $\omega \in \mathbb{R}$ describes a two-dimensional vortex around the origin with angular velocity $\frac{\omega}{2}$. Here rot $F = \omega$. For every disc $B_r(0)$, r > 0, where $\partial B_r(0)$ will be considered in the mathematically positive sense,

$$\int_{B_r(0)} \operatorname{rot} F \, dx = \omega \pi r^2 = \int_{\partial B_r(0)} F \cdot dx \,.$$

It holds even for every compact rectangle $R \subset \mathbb{R}^2$

$$\int_{R} \operatorname{rot} F \, dx = \int_{\partial R} F \cdot dx \, .$$

Definition A function $\varphi : [a,b] \to \mathbb{R}$ is called a function of bounded variation (in short: BV-function, $\varphi \in BV[a,b]$,) provided there exists a constant $M \ge 0$ such that

$$\sum_{k=1}^{n} |\varphi(t_k) - \varphi(t_{k-1})| \le M$$

for every partition $P: a = t_0 < t_1 < \ldots < t_n = b$ of [a, b]. In this case

$$V(\varphi) = \sup_{P} \sum_{k=1}^{n} |\varphi(t_k) - \varphi(t_{k-1})|$$

is called the *total variation* of φ on [a, b].

Remark Obviously the Mean Value Theorem shows that $C^1[a,b] \subset BV[a,b]$, but note that

$$C[a,b] \not\subset BV[a,b] \not\subset C[a,b]$$
 .

The function $\varphi:[a,b]\to\mathbb{R}$ is of bounded variation iff the curve $\gamma(t)=\begin{pmatrix}t\\\varphi(t)\end{pmatrix}$ is rectifiable; here, in contrast to the definition of paths, we do not require that a curve is continuous.

Definition A set $B \subset \mathbb{R}^2$ is called a BV-projected domain, provided there exist continuous functions $\varphi_1 \leq \varphi_2 \in BV[a, b]$ and $\psi_1 \leq \psi_2 \in BV[c, d]$ such that

$$B = \{(x, y) \in \mathbb{R}^2 : a \le x \le b, \varphi_1(x) \le y \le \varphi_2(x)\}$$
$$= \{(x, y) \in \mathbb{R}^2 : c \le y \le d, \psi_1(y) \le x \le \psi_2(y)\}.$$

Fig. 10.1 BV-projected domains

Main Theorem 10.1 (Green's Theorem) Let $B \subset \mathbb{R}^2$ be a BV-projected domain and let $\gamma = \partial B$ be the positively oriented boundary of B, i.e., the closed curve γ will be considered in the mathematically positive sense. Then for every C^1 -vector field F defined on an open set $G \supset B$

$$\int_{B} \operatorname{rot} F(x) dx = \int_{\gamma} F(x) \cdot dx.$$

Proof In a first step consider $F(x) = \begin{pmatrix} P(x) \\ 0 \end{pmatrix}$ yielding rot $F(x) = -\partial_2 P(x)$. Since B is a BV-projected domain (with respect to the x-axis), we write $\gamma = \partial B$ in the form $\gamma = \gamma_1 \cup \gamma_2 \cup \gamma_3 \cup \gamma_4$ using the rectifiable curves

$$\gamma_1(t) = \begin{pmatrix} t \\ \varphi_1(t) \end{pmatrix}, t \in [a, b]; \qquad \gamma_2(t) = \begin{pmatrix} b \\ \varphi_1(b) + t(\varphi_2(b) - \varphi_1(b)) \end{pmatrix}, t \in [0, 1];$$

$$\gamma_3^-(t) = \begin{pmatrix} t \\ \varphi_2(t) \end{pmatrix}, \ t \in [a,b]; \quad \ \gamma_4^-(t) = \begin{pmatrix} a \\ \varphi_1(a) + t(\varphi_2(a) - \varphi_1(a)) \end{pmatrix}, \ t \in [0,1] \ .$$

Here the notation γ_3^-, γ_4^- means that the curves γ_3, γ_4 originate from γ_3^-, γ_4^- by reversing the orientation, s. Fig. 10.2.

Fig. 10.2 The projected domain B

Now Theorem 8.14 and the Fundamental Theorem of Calculus yield

$$\int_{B} -\partial_{2} P(x) dx = \int_{a}^{b} \left(\int_{\varphi_{1}(x_{1})}^{\varphi_{2}(x_{1})} -\partial_{2} P(x_{1}, x_{2}) dx_{2} \right) dx_{1}$$
$$= \int_{a}^{b} \left(P(x_{1}, \varphi_{1}(x_{1})) - P(x_{1}, \varphi_{2}(x_{1})) \right) dx_{1}.$$

For the first part of the right hand side we get that

$$\int_{a}^{b} P(t, \varphi_{1}(t)) dt = \int_{\gamma_{1}} \begin{pmatrix} P \\ 0 \end{pmatrix} \cdot dx,$$

since for every partition $P: a = t_0 < t_1 < \ldots < t_n = b$ the Riemann sum

$$\sum_{k} \begin{pmatrix} P(t_k, \varphi_1(t_k)) \\ 0 \end{pmatrix} \cdot \begin{pmatrix} t_k - t_{k-1} \\ \varphi_1(t_k) - \varphi_1(t_{k-1}) \end{pmatrix}$$

approximating $\int_{\gamma_1} (P,0)^T \cdot dx$ is a Riemann sum of $\int_a^b P(t,\varphi_1(t)) dt$ as well. Analogously

$$-\int_a^b P(t,\varphi_2(t)) dt = \int_{\gamma_3} (P,0)^T \cdot dx.$$

Since $\int_{\gamma_2} (P,0)^T \cdot dx$ and $\int_{\gamma_4} (P,0)^T \cdot dx$ vanish, we get for $F=(P,0)^T$ that

$$\int_{B} \operatorname{rot} F \, dx = \int_{\gamma} F \cdot dx \, .$$

Analogously we prove the assertion for the vector field $F(x) = (0, Q(x))^T$ using that B is a BV-projected domain w.r.t. the y-axis. Now the Theorem is completely proved.

Remarks

(1) The meaning of Green's Theorem becomes evident when considering the projected domain B as a union $B = \bigcup_i Q_i$ of many small non-overlapping squares Q_i . Replacing F(x) on Q_i by its linear approximation $F(x) = F_i + a_i x + b_i x^{\perp}$ with constant $a_i, b_i \in \mathbb{R}$ and $x^{\perp} = (-x_2, x_1)^T$, we get that

$$\int_{Q_i} \operatorname{rot} F \, dx = \int_{Q_i} 2b_i \, dx = \int_{\partial Q_i} F \cdot dx \,,$$

since $F_i + a_i x = \nabla \left(F_i \cdot x + \frac{a_i}{2} |x|^2 \right)$ has a potential function; consequently rot $(F_i + a_i x) = 0$ and $\int_{\partial Q_i} (F_i + a_i x) \cdot dx = 0$. Passing from Q_i to a neighboring square Q_j the integrals of the tangential parts of F along $\partial Q_i \cap \partial Q_j$ vanish due to the opposite orientations of the boundaries and the continuity of F:

$$\int_{\partial Q_i \cap \partial Q_j} F|_{Q_i} \cdot dx + \int_{\partial Q_i \cap \partial Q_j} F|_{Q_j} \cdot dx = 0.$$

Hence

$$\int_{Q_i \cup Q_j} \operatorname{rot} F \, dx \doteq \int_{\partial (Q_i \cup Q_j)} F \cdot dx$$

and, summing up, even $\int_B \operatorname{rot} F \, dx = \int_{\partial B} F \cdot dx$. Here the first integral yields the overall vorticity integrated on B and the second integral yields the tangential flux of F along ∂B .

(2) For $F = \begin{pmatrix} P \\ Q \end{pmatrix}$ Green's Theorem may also be written in the form

$$\int_{B} (\partial_x Q - \partial_y P) d(x, y) = \int_{\partial B} (P dx + Q dy).$$

(3) Let P(x,y) = -y, Q(x,y) = x such that rot $(P,Q)^T = 2$. Then Green's Theorem yields for a BV-projected domain B the formula

$$B = \frac{1}{2} \int_{\partial B} (x \, dy - y \, dx)$$

computing the area |B| of B by a line integral on ∂B .

Corollary 10.2 Let $G \subset \mathbb{R}^2$ be open and let $F: G \to \mathbb{R}^2$ be a C^1 -vector field. Suppose that the set $B \subset G$ can be written as the union of two non-overlapping BV-projected domains with just one joint boundary component. Then

$$\int_{B} \operatorname{rot} F(x) dx = \int_{\gamma} F(x) \cdot dx,$$

where $\gamma = \partial B$ denotes the positively oriented boundary of B.

Supplement: The assertion also holds when B is the union of finitely many non-overlapping sets B_1, \ldots, B_N such that every B_j is a BV-projected domain w.r.t. some Euclidean coordinate system obtained by a suitable rotation if necesary and such that B_j and B_{j+1} have just one joint boundary component for every $1 \leq j \leq N-1$; furthermore B_N and B_1 are supposed to be disjoint.

Fig. 10.3 Non-overlapping BV-projected domains

Proof Let $\delta = \partial B_1 \cap \partial B_2$ be the joint, rectifiable boundary component of the decomposition of $B = B_1 \cup B_2$ into BV-projected domains B_1 and B_2 . By Theorem 10.1 and Corollary 8.7

$$\int_{B} \operatorname{rot} F \, dx = \int_{B_{1}} \operatorname{rot} F \, dx + \int_{B_{2}} \operatorname{rot} F \, dx$$
$$= \int_{\partial B_{1}} F \cdot dx + \int_{\partial B_{2}} F \cdot dx .$$

Since the sum of the line integrals $\int_{\delta} F \cdot dx$ and $\int_{\delta^{-}} F \cdot dx$ vanishes, we are left with the line integral $\int_{\partial B} F \cdot dx$.

Definition

(1) Let $B \subset \mathbb{R}^n$ be open and let $F: B \to \mathbb{R}^n$ be a C^1 -vector field. Then

$$\operatorname{div} F: B \to \mathbb{R}, \operatorname{div} F(x) = \sum_{i=1}^{n} \partial_{i} F_{i}(x)$$

(in short: div $F = \nabla \cdot F$) is called the divergence of F.

(2) Let $B \subset \mathbb{R}^2$ be a BV-projected domain, the positively oriented boundary $\gamma = \partial B$ of which may be written as a piecewise C^1 -path. If γ is continuously differentiable at t, we define the exterior normal vector $N(t) = (\gamma'_2(t), -\gamma'_1(t))$ pointing outward, and, if $\gamma'(t) \neq 0$, the exterior normal unit vector

$$n(t) = \frac{N(t)}{|N(t)|};$$

as usual $|\cdot| = ||\cdot||_2$.

Remark

- (1) The divergence denotes the magnitude of a source or sink of a velocity field or of a force field. The velocity field $F(x) = \frac{1}{2\pi} \frac{x}{|x|^2}$, $x \in \mathbb{R}^2 \setminus \{0\}$, describes a solenoidal, i.e. divergence–free flow in $\mathbb{R}^2 \setminus \{0\}$ with a source of magnitude 1 at the origin. The same assertion holds for the vector field $F(x) = \frac{1}{4\pi} \frac{x}{|x|^3}$, $x \in \mathbb{R}^3 \setminus \{0\}$.
- (2) A vector field of type F(x) = rot A(x) in \mathbb{R}^3 is solenoidal, in short:

$$div rot = 0$$
;

here the vector field A(x) is called a vector potential of F.

Fig. 10.4 Vector field with source, sink and flux on the boundary

Main Theorem 10.3 (Gauss' Theorem in \mathbb{R}^2) Let $B \subset \mathbb{R}^2$ be a BV-projected domain the positively oriented boundary $\gamma = \partial B$ of which is a piecewise regular C^1 -path. Then for a C^1 -vector field $F: G \to \mathbb{R}^2$ defined on an open set $G \supset B$

$$\int_{B} \operatorname{div} F(x) dx = \int_{\partial B} F(x) \cdot n(x) d\sigma(x) ,$$

where, using a parameterization of γ on [a, b],

$$\int_{\partial B} F \cdot n \, d\sigma := \int_a^b F(\gamma(t)) \cdot n(\gamma(t)) |\gamma'(t)| \, dt \, .$$

Remark

- (1) The proof will show that Theorem 10.3 holds under similar assumptions as 10.1 or 10.2.
- (2) The new "line integral" $\int_{\gamma} F \cdot n \, d\sigma$ is also written in the form $\int_{\gamma} F \cdot n \, d\sigma$ or $\int_{\gamma} F \cdot n \, dS$ using the area- or curve length element $do = d\sigma = dS = |\gamma'(t)| \, dt$.
- (3) In Gauß' Theorem $\int_B \operatorname{div} F \, dx$ yields the overall magnitude of the source (or sink) $\operatorname{div} F$ of F integrated on B while $\int_{\partial B} F \cdot n \, d\sigma$ denotes the outward net flux of F through ∂B .

Proof For
$$\widetilde{F}(x) = (-F_2(x), F_1(x))^T$$

rot
$$\widetilde{F} = \partial_1 \widetilde{F}_2 - \partial_2 \widetilde{F}_1 = \partial_1 F_1 + \partial_2 F_2 = \text{div } F.$$

Then 10.1 or 10.2 yield

$$\int_{B} \operatorname{div} F \, dx = \int_{B} \operatorname{rot} \widetilde{F} \, dx = \int_{\gamma} \widetilde{F} \cdot dx = \int_{a}^{b} \widetilde{F}(\gamma(t)) \cdot \gamma'(t) \, dt$$

$$= \int_{a}^{b} (-F_{2} \cdot \gamma'_{1} + F_{1} \cdot \gamma'_{2}) \, dt = \int_{a}^{b} F \cdot N \, dt$$

$$= \int_{a}^{b} F \cdot n \, |\gamma'| \, dt = \int_{\partial B} F \cdot n \, d\sigma \, .$$

11 Integral Theorems in \mathbb{R}^3

Before generalizing Green's and Gauß' Theorem to three dimensions we define area and surface integrals in \mathbb{R}^3 .

Definition Let $K \neq \emptyset$ be a compact Jordan–measurable subset of \mathbb{R}^2 , let $G \supset K$ be open and let $\phi: G \to \mathbb{R}^3$ be a C^1 –map. Then

$$S = \{\phi(u) : u \in K\}$$

is called a parametric surface in \mathbb{R}^3 with parametrization (ϕ, K) and domain of parameters K. If for every parameter $u \in G$ the functional matrix

$$D\phi(u) = \begin{pmatrix} \partial_1 \phi_1 & \partial_2 \phi_1 \\ \partial_1 \phi_2 & \partial_2 \phi_2 \\ \partial_1 \phi_3 & \partial_2 \phi_3 \end{pmatrix} (u)$$

has rank 2, i.e., the column vectors of $D\phi(u)$ are linearly independent, the parametrization is called regular or non-degenerate at $u \in G$.

Fig. 11.1 A domain of parameters in \mathbb{R}^3

Remark The condition on the rank of $D\phi$ guarantees that at every point $x = \phi(u)$ of the parametric surface S two linearly independent tangential vectors, namely $\partial_1\phi(u)$ and $\partial_2\phi(u)$, exist. Using the vector product of $\partial_1\phi$ and $\partial_2\phi$ we will define the normal vector at x.

The vector product, also called wedge product or exterior product,

$$\wedge : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3 , \quad x, y \longmapsto x \wedge y = \begin{pmatrix} x_2 y_3 - x_3 y_2 \\ x_3 y_1 - x_1 y_3 \\ x_1 y_2 - x_2 y_1 \end{pmatrix} ,$$

has the following properties (for all $x, y, z \in \mathbb{R}^3$, $\lambda \in \mathbb{R}$):

- (i) $x \wedge y = -y \wedge x$, $x \wedge x = 0$
- (ii) $(\lambda x) \wedge y = x \wedge (\lambda y) = \lambda(x \wedge y)$
- (iii) $x \wedge (y+z) = x \wedge y + x \wedge z$, $(x+y) \wedge z = x \wedge z + y \wedge z$
- (iv) $|x \wedge y| = |x||y||\sin \angle(x,y)|$

Since $|y| | \sin \angle(x, y)|$ is the height of the parallelogram spanned by the vectors x and y, the Euclidean length $|x \wedge y|$ of $x \wedge y$ is the area of this parallelogram.

Fig. 11.2 The vector product

Hence $\frac{1}{2}|x \wedge y|$ is the area of the triangle with vertices 0, x and y.

- (v) $x \wedge y = 0 \Leftrightarrow x$ and y are linearly dependent
- (vi) $\langle x, x \land y \rangle = \langle y, x \land y \rangle = 0$

The vector $x \wedge y$ is orthogonal to x and y. Furthermore, every vector orthogonal to x and y is a scalar multiple of $x \wedge y$.

Definition Let $S \subset \mathbb{R}^3$ be a parametric surface in \mathbb{R}^3 with parametrization (ϕ, K) , $\phi \in C^1(G)$, $G \supset K$ open. Then we define at $x = \phi(u) \in S$ the tangential vectors $\partial_1 \phi(u)$ and $\partial_2 \phi(u)$ as well as the *normal vector*

$$N(u) = \partial_1 \phi(u) \wedge \partial_2 \phi(u)$$

and the normal unit vector

$$n(u) = \begin{cases} \frac{N(u)}{|N(u)|} & \text{, falls } N(u) \neq 0\\ 0 & \text{, falls } N(u) = 0 \end{cases}$$

Examples

(1) Let $f \in C^1(G)$ and let $S \subset \mathbb{R}^3$ denote the surface given as the graph of f, i.e., $S = \{\phi(u) : u \in K\}$ with $\phi(u) = (u_1, u_2, f(u))^T$. Then

$$D\phi(u) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \partial_1 f & \partial_2 f \end{pmatrix}$$

has rang 2 at every $u \in K$ and

$$N(u) = \begin{pmatrix} 1 \\ 0 \\ \partial_1 f \end{pmatrix} \wedge \begin{pmatrix} 0 \\ 1 \\ \partial_2 f \end{pmatrix} = \begin{pmatrix} -\partial_1 f \\ -\partial_2 f \\ 1 \end{pmatrix}.$$

(2) The unit sphere $\partial U_1(0)$ in \mathbb{R}^3 may be parameterized over $K = [0, 2\pi] \times [-\frac{\pi}{2}, \frac{\pi}{2}] \subset G = \mathbb{R}^2$ by

$$\phi(u) = \begin{pmatrix} \cos u_1 \cos u_2 \\ \sin u_1 \cos u_2 \\ \sin u_2 \end{pmatrix}.$$

Then

$$D\phi(u) = \begin{pmatrix} -\sin u_1 \cos u_2 & -\cos u_1 \sin u_2 \\ \cos u_1 \cos u_2 & -\sin u_1 \sin u_2 \\ 0 & \cos u_2 \end{pmatrix}, \quad N(u) = \begin{pmatrix} \cos u_1 \cos^2 u_2 \\ \sin u_1 \cos^2 u_2 \\ \sin u_2 \cos u_2 \end{pmatrix},$$

yielding $N = \cos u_2 \cdot \phi(u_1, u_2)$ and $|N| = \cos u_2$. Evidently N is parallel to the vector ϕ ; however, the unit sphere is degenerate at the north and south pole $(u_2 = \frac{\pi}{2} \text{ and } u_2 = -\frac{\pi}{2}, \text{ resp.})$ for this parametrization.

Remark Given a parametric surface S with parametrization (ϕ, K) and a point $x = \phi(u)$ on S the parallelogram

$$P = \{ \phi(u) + s_1 \partial_1 \phi(u) + s_2 \partial_2 \phi(u) : 0 \le s_1 \le \varepsilon_1, 0 \le s_2 \le \varepsilon_2 \}$$

linearly approximating S at x has the area

$$|\varepsilon_1 \partial_1 \phi(u) \wedge \varepsilon_2 \partial_2 \phi(u)| = \varepsilon_1 \varepsilon_2 |N(u)|.$$

Therefore, the term

$$do(u) = |N(u)| du$$

is called *surface element* in the definition of surface integrals below.

Fig. 11.3 Approximating parallelogram

Definition Let $S \subset \mathbb{R}^3$ be a parametric surface with parametrization (ϕ, K) and let $f: \phi(K) \to \mathbb{R}$ continuous. Then

$$\int_S f \, do := \int_K f(\phi(u))|N(u)| \, du$$

is called the surface integral of f on the surface S. For $f \equiv 1$

$$|S| = \int_{S} 1 \, do = \int_{K} |N(u)| \, du$$

is called the area of S.

Since a surface S has different parametrizations, we have to show that the previous definition of $\int_S f \, do$ is independent of the parametrization (cf. the analogous result for the arc length and for line integrals).

Lemma 11.1 Let $S \subset \mathbb{R}^3$ be a surface with parametrizations (ϕ, K) , $G \supset K$ open, and (ϕ', K') , $G' \supset K'$ open, and let $g : G' \to G$ be an injective C^1 -map with g(K') = K and $\phi'(s) = \phi(g(s))$ on G'. The normal vectors are denoted by N(u) at $u \in K$ and by N'(s) at $s \in K'$. Moreover, let $\det Dg$ be either strictly positive or strictly negative on G'. Then

$$\int_{K} f(\phi(u))|N(u)| du = \int_{K'} f(\phi'(s))|N'(s)| ds.$$

Proof Since

$$\partial_1 \phi' = \partial_1 \phi \cdot \partial_1 g_1 + \partial_2 \phi \cdot \partial_1 g_2 ,$$

$$\partial_2 \phi' = \partial_1 \phi \cdot \partial_2 g_1 + \partial_2 \phi \cdot \partial_2 g_2 ,$$

the normal vector N'(s) at $x = \phi'(s) = \phi(u)$, u = g(s), equals

$$N'(s) = \partial_{1}\phi' \wedge \partial_{2}\phi'$$

$$= (\partial_{1}g_{1})(\partial_{2}g_{1})\underbrace{\partial_{1}\phi \wedge \partial_{1}\phi}_{=0} + (\partial_{1}g_{1})(\partial_{2}g_{2})\underbrace{\partial_{1}\phi \wedge \partial_{2}\phi}_{=N(u)}$$

$$+(\partial_{1}g_{2})(\partial_{2}g_{1})\underbrace{\partial_{2}\phi \wedge \partial_{1}\phi}_{=-N(u)} + (\partial_{1}g_{2})(\partial_{2}g_{2})\underbrace{\partial_{2}\phi \wedge \partial_{2}\phi}_{=0}$$

$$= (\partial_{1}g_{1} \cdot \partial_{2}g_{2} - \partial_{1}g_{2} \cdot \partial_{2}g_{1}) N(u),$$

hence $|N'(s)| = |\det Dg(s)| |N(u)|$. Then by the Change of Variable Formula

$$\int_{K} f(\phi(u)) |N(u)| du = \int_{K'} f(\phi(g(s))) |\det Dg(s)| |N(g(s))| ds$$
$$= \int_{K'} f(\phi'(s)) |N'(s)| ds.$$

Example Consider the parametrization of the unit sphere $S = \partial U_1(0)$ in \mathbb{R}^3 as above. Since $K = [0, 2\pi] \times [-\frac{\pi}{2}, \frac{\pi}{2}]$ and $|N(u)| = \cos u_2$,

$$|\partial U_1(0)| = \int_K \cos u_2 \, du = \int_0^{2\pi} du_1 \cdot \int_{-\pi/2}^{\pi/2} \cos u_2 \, du_2 = 4\pi.$$

Analogously we get that $|\partial U_R(0)| = 4\pi R^3$.

Main Theorem 11.2 (Stokes' Integral Theorem in \mathbb{R}^3) Let $G \subset \mathbb{R}^2$ be open and let $K \subset G$ be a BV-projected domain the boundary ∂K of which has a piecewise C^1 -parametrization γ . Furthermore, let $\phi: G \to \mathbb{R}^3$ be a C^2 -map and let $S = \{\phi(u) : u \in K\}$ be a parametric surface in \mathbb{R}^3 , the 'boundary' of which is defined by $\partial S = \phi(\partial K)$.

If $F: U \to \mathbb{R}^3$ is a C^1 -vector field on an open set U containing S, then

$$\int_{S} \operatorname{rot} F \cdot n \, do = \int_{\partial S} F \cdot dx \, .$$

Using parametrizations Stokes' Integral Theorem reads as follows:

$$\int_K \operatorname{rot} F(\phi(u)) \cdot N(u) \, du = \int_{\phi(\gamma)} F \cdot dx \, .$$

Proof Consider a vector field $F = (P, 0, 0)^T$; the proof for $F = (0, Q, 0)^T$ and $F = (0, 0, R)^T$ will follow the same line.

Fig. 11.4 Concerning Stokes' Integral Theorem

First the line integral $\int_{\partial S} F \cdot dx = \int_{\phi(\gamma)} F \cdot dx$ along the path $\phi(\gamma) \subset \mathbb{R}^3$ will be rewritten as a line integral along the path $\gamma \subset \mathbb{R}^2$. Given a piecewise C^1 -parametrization $\gamma:[0,1]\to \partial K$ of ∂K we get that

$$\int_{\phi(\gamma)} \begin{pmatrix} P \\ 0 \\ 0 \end{pmatrix} \cdot dx = \int_0^1 P(\phi(\gamma(t))) (\phi_1 \circ \gamma)'(t) dt$$

$$= \int_0^1 (P \circ \phi)(\gamma(t)) (\partial_1 \phi_1 \cdot \gamma_1' + \partial_2 \phi_1 \cdot \gamma_2')(t) dt$$

$$= \int_{\gamma} P \circ \phi \begin{pmatrix} \partial_1 \phi_1 \\ \partial_2 \phi_1 \end{pmatrix} \cdot dx$$

and, using Green's 10.1, that

$$\int_{\gamma} (P \circ \phi) \nabla \phi_1 \cdot dx = \int_K \operatorname{rot} ((P \circ \phi) \nabla \phi_1) du.$$

By the definition of the 'scalar' rotation in \mathbb{R}^2

$$\operatorname{rot} ((P \circ \phi) \nabla \phi_{1}) = \partial_{1} ((P \circ \phi) \partial_{2} \phi_{1}) - \partial_{2} ((P \circ \phi) \partial_{1} \phi_{1})$$

$$= (\partial_{1} (P \circ \phi)) \partial_{2} \phi_{1} - (\partial_{2} (P \circ \phi)) \partial_{1} \phi_{1} + (P \circ \phi) \underbrace{\left[\partial_{1} \partial_{2} \phi_{1} - \partial_{2} \partial_{1} \phi_{1}\right]}_{=0}$$

$$= (\partial_{1} P \cdot \partial_{1} \phi_{1} + \partial_{2} P \cdot \partial_{1} \phi_{2} + \partial_{3} P \cdot \partial_{1} \phi_{3}) \partial_{2} \phi_{1}$$

$$- (\partial_{1} P \cdot \partial_{2} \phi_{1} + \partial_{2} P \cdot \partial_{2} \phi_{2} + \partial_{3} P \cdot \partial_{2} \phi_{3}) \partial_{1} \phi_{1}$$

$$= \partial_{2} P \underbrace{\left(\partial_{1} \phi_{2} \cdot \partial_{2} \phi_{1} - \partial_{1} \phi_{1} \cdot \partial_{2} \phi_{2}\right)}_{=-N_{2}} + \partial_{3} P \underbrace{\left(\partial_{1} \phi_{3} \cdot \partial_{2} \phi_{1} - \partial_{2} \phi_{3} \cdot \partial_{1} \phi_{1}\right)}_{=N_{2}},$$

since $\phi_1 \in C^2$ and $N = \partial_1 \phi \wedge \partial_2 \phi$. Now the identity $\operatorname{rot} F = (0, \partial_3 P, -\partial_2 P)^T$ yields

$$rot((P \circ \phi)\nabla \phi_1) = ((rot F) \circ \phi) \cdot N.$$

Summarizing we get

$$\int_{\partial S} F \cdot dx = \int_{\gamma} (P \circ \phi) \nabla \phi_1 dx = \int_K \operatorname{rot}((P \circ \phi) \nabla \phi_1) du$$
$$= \int_K ((\operatorname{rot} F) \circ \phi) \cdot N du = \int_S \operatorname{rot} F \cdot n do.$$

Definition

(1) A compact set $V \subset \mathbb{R}^3$ is called C^1 -projected domain w.r.t. the x_1x_2 -plane iff there exist a compact set $K \subset \mathbb{R}^2$ and C^1 -functions $\varphi_1 \leq \varphi_2$ on an open set containing K such that

$$V = \{(x_1, x_2, x_3) = (x', x_3) \in \mathbb{R}^3 : x' \in K, \ \varphi_1(x') \le x_3 \le \varphi_2(x')\}$$

and ∂K is parametrized by a piecewise C^1 -path. Analogously we define C^1 -projected domains w.r.t. the x_2x_3 - and the x_1x_3 -plane.

(2) The compact set V is called C^1 -projected domain iff V is a C^1 -projected domain w.r.t. the x_1x_2 -, the x_2x_3 - and the x_1x_3 -plane.

Fig. 11.5 A C^1 -projected domain w.r.t. the x_1x_2 -plane

Remark In (1) the 'upper lid' $S_2 = \phi_2(K)$ defines a regular C^1 -surface in \mathbb{R}^3 with parametrization

$$\phi_2: K \to \mathbb{R}^3$$
, $u = x' \mapsto \phi_2(x') = (x', \varphi_2(x'))$.

The normal vector $N(x') = (-\partial_1 \varphi_2, -\partial_2 \varphi_2, 1)^T$ defines the exterior normal unit vector

$$n(x') = \frac{N(x')}{|N(x')|}$$

w.r.t. V. However, for the 'lower lid' $S_1 = \phi_1(K)$ the exterior normal unit vector (w.r.t. V) is n(x') = -N(x')/|N(x')|.

Main Theorem 11.3 (Gauss' Divergence Theorem in \mathbb{R}^3) Let V be a C^1 projected domain in \mathbb{R}^3 and let F be a C^1 -vector field on an open set containing V. Then

$$\int_{V} \operatorname{div} F \, dx = \int_{\partial V} F \cdot n \, do \, .$$

Proof Consider $F = (0, 0, R)^T$. Since div $F = \partial_3 R$, by 8.14

$$\int_{V} \operatorname{div} F \, dx = \int_{K} \left(\int_{\varphi_{1}(x')}^{\varphi_{2}(x')} \partial_{3} R(x', x_{3}) \, dx_{3} \right) \, dx'$$

$$= \int_{K} \left(R(x', \varphi_{2}(x')) - R(x', \varphi_{1}(x')) \right) \, dx' \, .$$

On the upper lid $S_2 = \phi_2(K)$ we have $F \cdot N = R N_3 = R$. Thus

$$\int_K R(x', \varphi_2(x')) dx' = \int_K F \cdot N dx' = \int_{S_2} F \cdot n do;$$

analogously

$$-\int_K R(x',\varphi_1(x')) dx' = \int_{S_1} F \cdot n do.$$

On the remaining part of the boundary $\partial V \setminus S_1 \setminus S_2$, i.e., on

$$S_3 = \{(x', x_3) : x' \in \partial K, \varphi_1(x') \le x_3 \le \varphi_2(x')\},$$

the exterior normal unit vector n exists (except for finitely many segments $\{x'\} \times [\varphi_1(x'), \varphi_2(x')]$ with $x' \in \partial K$, where the parametrization of ∂K is not differentiable). Since $n_3 = 0$ for $x \in S_3$, we see that $F \cdot n = Rn_3 = 0$ on S_3 .

Summarizing we get that

$$\int_{V} \operatorname{div} F \, dx = \sum_{j=1}^{3} \int_{S_{j}} F \cdot n \, do = \int_{\partial V} F \cdot n \, do.$$

An analogous proof will be used when F = (P, 0, 0) and when F = (0, Q, 0). \square

Corollary 11.4 (Integration by parts in \mathbb{R}^3) Let $V \subset \mathbb{R}^3$ be a C^1 -projected domain and let u, v be C^1 -functions on an open set containing V. Then for i = 1, 2, 3

$$\int_{V} u \, \partial_{i} v \, dx = - \int_{V} (\partial_{i} u) \, v \, dx + \int_{\partial V} u \, v \, n_{i} \, do .$$

Proof Applying Theorem 11.3 to the vector field $F(x) := u v e_i$ we get the assertion, since div $F = u \partial_i v + (\partial_i u) v$ and $F \cdot n = u v n_i$.

Remarks

- (1) Theorem 11.3 and Corollary 11.4 hold under weaker assumptions on V: The compact set V can be written as the union of finitely many non-overlapping C^1 -projected domains. The lids of these projected domains are assumed to be 'piecewise C^1 ' only.
- (2) An essentially weaker assumptions on V has a local character: At every point $x \in \partial V$ there exists a neighborhood $U \subset \mathbb{R}^3$ such that after a suitable rotation of the coordinate system $U \cap \partial V$ may be written as graph of a Lipschitz continuous function. In this case the normal vector exists only 'almost everywhere'.
- (3) Theorem 11.3 and Corollary 11.4 hold for every space dimension $n \geq 2$.