10 Integral Theorems in R?

The aim of Sections 10 and 11 is the generalization of the fundamental theorem
of calculus

/ f(@)de = £(b) - f(a)

and of integration by parts

b b
/ u'vdx:—/ w' dz + w)
a a

to multidimensional integrals. Here the question arises which (partial) differential

operator will replace % and which boundary terms will replace uv|?.

Definition
(1) A mapping F': BC R* —» R" is called a vector field.

(2) Let B C R® be open and let F': B — R® be a C'—vector field. Then the
vector field

Oy F3 — 03 F
rot F: B— R, rot F(z)=| 03F, — 01 Fy | (x),
31F2 — 82F1

is called the rotation or curl of F.

(3) Let B C R? be open and let F : B — R? be a C'-vector field. Then the
(scalar—valued) rotation or curl is defined by

rot F(ﬂ?) = 81F2(33) - BgFl(x) .

Note that in this case rot F' equals the third component of rotﬁ, the rotation
of the 3D—vector field

F($1,$2,$3) = (F1(331,332) ,F2($1,l‘2) aO)T'

Examples

(1) Vector fields occur e.g. as velocity fields in hydrodynamics, as displacement
vectors of elastic bodies, as force fields in the theory of electromagnetism
and of gravitation.

(2) For
w1 Wol3 — W3T2
w= | wy and F(x)= 5 W3T1 — WiT3
w3 W12 — Walh

we get rot F' = w. The velocity field F' decribes a rigid body rotation around
the axis w € R® with angular velocity f|w|, || =] - ||

48



(3) Define the vector field F' by the scalar C*—potential function ¢ : B — R,
i.e., F(z) = Vy(z). Then rot F(x) = 0; in other words,

gradient fields are irrotational, in short: rot grad = 0.

(4) The vector field F(z,y) = 4(—y,z)", w € R describes a two-dimensional
vortex around the origin with angular velocity % . Here rot F' = w. For every
disc B,(0), r > 0, where 0B,(0) will be considered in the mathematically
positive sense,

/ rothx=w7T7°2:/ F-dx.
B, (0) 8B, (0)

It holds even for every compact rectangle R C R?

/rotha::/ F-dz.
R AR

Definition A function ¢ : [a,b] — R is called a function of bounded variation
(in short: BV —function, ¢ € BV[a,b],) provided there exists a constant M > 0
such that

Z [p(tr) — o(te—1)| < M

for every partition P:a =1ty <t; < ... <t, =b of [a,b]. In this case

V(g) =sup > leolte) = @(te)]

is called the total variation of ¢ on [a, b].

Remark Obviously the Mean Value Theorem shows that C'[a,b] C BV|a,b],
but note that
Cla,b] ¢ BV]a,b] ¢ Cla,b] .

The function ¢ : [a,b] — R is of bounded variation iff the curve y(t) = (SDE t))
is rectifiable; here, in contrast to the definiton of paths, we do not require that a

curve is continuous.

Definition A set B C R? is called a BV —projected domain, provided there exist
continuous functions ¢; < ¢y € BV |[a,b] and ¢ < 19 € BV]e, d] such that

B ={(z,y) eR:a<z<b,p(z) <y<por)}

={(z,y) eER:c<y<d,Pi(y) <z <1(y)} .
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a b a a b
B isa BV-projected domain B,, B, are BV-projected domains

B,UB; isn’t a BV—projected domain
Fig. 10.1 BV -projected domains

Main Theorem 10.1 (Green’s Theorem) Let B C R? be a BV-projected
domain and let v = OB be the positively oriented boundary of B, i.e., the closed

curve v will be considered in the mathematically positive sense. Then for every
C'—vector field F defined on an open set G O B

.LmF@m:Lﬂwdw

Proof In a first step consider F(z) = (P(()x)) yielding rot F'(z) = —09P(x).

Since B is a BV -projected domain (with respect to the z—axis), we write vy = 0B
in the form v = v; U y9 U 3 U 74 using the rectifiable curves

3 b
101= (g0) 1€ 0 0= (4,0 it~ ) 1€ 01

_ t _ a
50 = ()£ €05 0= (o) 4 i) (@) €01

Here the notation 75,7y, means that the curves 73, y4 originate from ~;,~, by
reversing the orientation, s. Fig. 10.2.
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Ya(t)

Y, (1) B Y, (t)

Y, (0)

Fig. 10.2 The projected domain B

Now Theorem 8.14 and the Fundamental Theorem of Calculus yield

/3—82P(:E) do = /a: (/:::)1) —0y P (21, 79) d@) dz1
:L(Puwmwm—Puhwua»mL

For the first part of the right hand side we get that

/:P(t,gol(t))dt:/w (]g) d,

since for every partition P :a =1ty <t < ... <t, = b the Riemann sum

Z (P(tk, gl(tk))) . (@1(751?; _ (t;l(ltkl))

k

approximating [\ (P,0)" - dz is a Riemann sum of fab P(t, p1(t)) dt as well. Ana-
logously

- [ Peyar= [ o s,

3

Since [, (P,0)" - dz and [ (P,0)" - dz vanish, we get for F' = (P,0)" that
/rothx:/F-dx.
B Y
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Analogously we prove the assertion for the vector field F(z) = (0,Q(z))T using
that B is a BV —projected domain w.r.t. the y—axis. Now the Theorem is com-
pletely proved. [ ]

Remarks

(1)

The meaning of Green’s Theorem becomes evident when considering the
projected domain B as a union B = |J; Q; of many small non-overlapping
squares @;. Replacing F(x) on @; by its linear approximation F'(x) = F; +
a;x + bzt with constant a;,b; € R and 2+ = (=9, 71)T, we get that

/rotha::/ 2bida:=/ F-dx,
Qi Q 0Q;

since F; + a;xz = V(F; - © + %|z|?) has a potential function; consequently
rot (F; + a;z) = 0 and faQi (F; + a;z) - do = 0. Passing from Q; to a neigh-
boring square (); the integrals of the tangential parts of F' along 0Q); N 0Q);
vanish due to the opposite orientations of the boundaries and the continuity

of F"
/ F|Qi-d:c+/ Flg,-dz=0.
6Q106Qj 3Qiﬁan

/ rot F'dx = / F-dz
QiVQ; (Q:LQj;)

and, summing up, even || grot Fdx = fBBF - dr. Here the first integral
yields the overall vorticity integrated on B and the second integral yields
the tangential flux of F' along 0B.

i

Hence

For F = <g

) Green’s Theorem may also be written in the form

/B (0.0 — 3,P) d(z, y) — /a (Pdr-+Qy).

Let P(z,y) = —y, Q(z,y) = z such that rot (P,Q)? = 2. Then Green’s
Theorem yields for a BV —projected domain B the formula

1
|B| = 5/ (zdy — ydz)
OB

computing the area |B| of B by a line integral on 0B.
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Corollary 10.2 Let G C R? be open and let F' : G — R? be a C*—vector field.
Suppose that the set B C G can be written as the union of two non-overlapping
BV —projected domains with just one joint boundary component. Then

/Brot F(z) dmle(w)-dz,

where v = 0B denotes the positively oriented boundary of B.

Supplement: The assertion also holds when B is the union of finitely many
non-overlapping sets By,..., By such that every B; 1s a BV -projected domain
w.r.t. some Fuclidean coordinate system obtained by a suitable rotation if necesary
and such that B; and Bji, have just one joint boundary component for every
1< j < N —1; furthermore By and By are supposed to be disjoint.

I

* 1

Fig. 10.3 Non-overlapping BV —projected domains

Proof Let 6 = 0B; N 0B, be the joint, rectifiable boundary component of
the decomposition of B = B; U By into BV —projected domains B; and B,. By
Theorem 10.1 and Corollary 8.7

/rothx :/ rothx—i—/ rot F'dx
B By Bs

=/ F-d:c+/ Fdx.
0B 0B2

Since the sum of the line integrals [; F' - dz and [; F - dz vanishes, we are left
with the line integral faB F - dx. ]

Definition

(1) Let B C R™ be open and let F': B — R" be a C"'—vector field. Then
divF:B—R, divF(z) =) 0Fi()
i=1
(in short: div F' = V - F) is called the divergence of F.
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(2) Let B C R? be a BV-projected domain, the positively oriented boun-
dary v = OB of which may be written as a piecewise Cl-path. If ~
is continuously differentiable at ¢, we define the ezterior normal vector
N(t) = (74(t), —vi(t)) pointing outward, and, if 4/(t) # 0, the ezterior
normal unit vector

asusual |- | = || - |2
Remark

(1) The divergence denotes the magnitude of a source or sink of a velocity
field or of a force field. The velocity field F(z) = =% , z € R? \ {0},

o Jaf?
describes a solenoidal, i.e. divergence—free flow in R? \ {0} with a source
of magnitude 1 at the origin. The same assertion holds for the vector field
F(z)=Lt=2, 2R\ {0}

= e
(2) A vector field of type F(z) = rot A(z) in R? is solenoidal, in short:
div rot =0;

here the vector field A(z) is called a vector potential of F.
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Fig. 10.4 Vector field with source, sink and flux on the boundary
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Main Theorem 10.3 (Gauss’ Theorem in R?) Let B C R? be a BV~
projected domain the positively oriented boundary v = 0B of which is a piecewise
reqular C'—path. Then for a C'-vector field F : G — R? defined on an open set
GOB

/B div F(z)dz = / Flz) - n(z) do(z),

0B

where, using a parameterization of vy on [a,b],

/ Fondo = / F(y(t)) - nly(®) (5] dt .
0B a

Remark

(1) The proof will show that Theorem 10.3 holds under similar assumptions as
10.1 or 10.2.

(2) The new “line integral” f7 F -ndo is also written in the form f7 F-ndo or
f7 F-n dS using the area- or curve length element do = do = dS = |/(t)| dt.

(3) In GauB’ Theorem [, div F dz yields the overall magnitude of the source
(or sink) div F' of F integrated on B while [, F'-ndo denotes the outward
net flux of F' through 0B.

Proof For F(z) = (—Fy(z), Fi(z))"
rot F = 8, Fy — 0o Fy = O,F, + 0,F, = div F.

Then 10.1 or 10.2 yield

/Bdideac :/Brotﬁdx = Aﬁ-dm :/abﬁ('y(t))-fy'(t)dt

b b

b
:/ F-nl|yl|dt =/ F-ndo.
a 0B
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11 Integral Theorems in R

Before generalizing Green’s and Gaufl’ Theorem to three dimensions we define
area and surface integrals in R3.

Definition Let K # () be a compact Jordan—measurable subset of R?, let G D K
be open and let ¢ : G — R?® be a C'-map. Then
S={¢(u) :ueK}

is called a parametric surface in R® with parametrization (¢, K) and domain of
parameters K. If for every parameter u € G the functional matrix

o1 D2t
Do(u) = | 012 022 | (uw)
13 Oap3

has rank 2, i.e., the column vectors of D¢(u) are linearly independent, the para-
metrization is called reqular or non-degenerate at u € G.

u,

Fig. 11.1 A domain of parameters in R3

Remark The condition on the rank of D¢ guarantees that at every point x =
¢(u) of the parametric surface S two linearly independent tangential vectors,
namely 0;¢(u) and 0s¢(u), exist. Using the vector product of 0;¢ and 0y we
will define the normal vector at =x.

The wvector product, also called wedge product or exterior product,

T2Ys — X3Y2
/\:]R3><]R3—>]R3, T, Yy—> T ANy = | 23y1 — T1Y3 | ,
T1Y2 — T2Y1

has the following properties (for all z,y,2z € R*, A € R):
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(i) zAy=—yAz,zAz=0

(ii) (Az) Ay =z A (Ny) =z Ay)

(i) zA(y+2)=xzAy+zAhz, (z+y)Az=xANz+yAz
(iv) [z Ayl = |zlly||sin £(z,y)]

Since |y||sin £(x,y)| is the height of the parallelogram spanned by the vec-
tors z and y, the Euclidean length |z A y| of x A y is the area of this
parallelogram.

XAY

X

Fig. 11.2 The vector product

Hence |z A y| is the area of the triangle with vertices 0,z and y.
(v) x Ay =0<% x and y are linearly dependent

(Vi) <z, zAy>=<y,zAy>=0

The vector x Ay is orthogonal to z and y. Furthermore, every vector ortho-
gonal to x and y is a scalar multiple of x A y.

Definition Let S C R® be a parametric surface in R® with parametrization
(¢,K), ¢ € C'(G), G D K open. Then we define at x = ¢(u) € S the tangential
vectors 01¢(u) and Oxd(u) as well as the normal vector

N(u) = 014(u) A O2¢(u)
and the normal unit vector

N(u)
n(u) = 4 V@ falls N(u) #0
0 , falls N(u) =0.
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Examples

(1) Let f € C'(G) and let S C R® denote the surface given as the graph of f,
ie., S={d(u):ue K} with ¢(u) = (u1, us, f(u))”. Then

1 0
Do(uy=1 0 1
of of
has rang 2 at every v € K and
1 0 -0 f
N(U) = 0 A 1 = —an
o f o f 1

(2) The unit sphere 0U;(0) in R® may be parameterized over K = [0,27] X
-2, 2] C G=R? by

272

COS U1 COS Uy

é(u) = | sinwu cos ug
sin us
Then
—sinuj CoOSuUy — COS Up Sin Uy COS U7 COSZ Us
D¢(u) = COSUj COSUy  — Sin U Sin Uy , N(u)=| sinujcos?uy |,
0 COS Uy Sin Uy COS Uy

yielding N = cos us - ¢(u1,us) and |N| = cosuy. Evidently N is parallel to
the vector ¢; however, the unit sphere is degenerate at the north and south
pole (u; = ¥ and uy = —7, resp.) for this parametrization.

Remark Given a parametric surface S with parametrization (¢, K') and a point
x = ¢(u) on S the parallelogram

P ={¢(u) + 51010(u) + 52020(u) : 0 < 51 < 1,0 < 59 < &9}
linearly approximating S at x has the area
le1016(u) A €2020(u)| = e162| N (u)| .

Therefore, the term
do(u) = |N(u)| du

is called surface element in the definition of surface integrals below.
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X3

Fig. 11.3 Approximating parallelogram

Definition Let S C R? be a parametric surface with parametrization (¢, K)
and let f: #(K) — R continuous. Then

/fdo—/f u)| du

is called the surface integral of f on the surface S. For f =1

\S\:/Sldo:/K\N(uﬂdu

Since a surface S has different parametrizations, we have to show that the
previous definition of fs fdo is independent of the parametrization (cf. the
analogous result for the arc length and for line integrals).

is called the area of S.

Lemma 11.1 Let S C R® be a surface with parametrizations (¢, K), G D K
open, and (¢', K'), G' D K' open, and let g : G' — G be an injective C*-map
with g(K') = K and ¢'(s) = ¢(g(s)) on G'. The normal vectors are denoted by
N(u) at uw € K and by N'(s) at s € K'. Moreover, let det Dg be either strictly
positive or strictly negative on G'. Then

| few)Nwdi= [ 1@ )N ds.
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Proof Since
01d = 01p-01g1+ Do O1go,

0p¢' = 016~ 0291 + a6 - Dags
the normal vector N'(s) at z = ¢'(s) = ¢(u), u = g(s), equals
N’(S) = 61(]5’ N 82¢’

= (0191)(0291) 016 A 016 +(0191)(0292) 019 A 029
—— S——

=0 :N(u)
+(0192)(0291) 020 N 019 +(0192)(0292) 029 A 026
o I
= (0191 0aga — 0192 - O291) N(u) ,
hence |N'(s)| = |det Dg(s)| |N(u)|. Then by the Change of Variable Formula
| o) IN ) du = / F(69(s))) det Dy(s)| [N (g()] ds

T '(s)) IN(s)| ds .
0

Example Consider the parametrization of the unit sphere S = 9U;(0) in R® as
above. Since K = [0, 27] x [-7, 5] and |N(u)| = cos us,

/2
|0U,(0)] = / cos ug du = / du; - / cos ug dug = 47 .
K 0 —m/2
Analogously we get that |0UR(0)| = 47 R3.

Main Theorem 11.2 (Stokes’ Integral Theorem in R®) Let G C R? be
open and let K C G be a BV —projected domain the boundary 0K of which has a
piecewise C'—parametrization . Furthermore, let ¢ : G — R® be a C*—map and
let S ={¢(u): u € K} be a parametric surface in R®, the boundary’ of which is
defined by 0S = ¢(0K).

IfF:U = R is a C'vector field on an open set U containing S, then

/rotF-ndOZ/ F-dx.
s a8

Using parametrizations Stokes’ Integral Theorem reads as follows:

/KrotF(qs(u))-N(u)du:/¢(7)F-dx.

Proof Consider a vector field F' = (P,0,0)7; the proof for F = (0,Q,0)” and
F = (0,0, R)T will follow the same line.
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Fig. 11.4 Concerning Stokes’ Integral Theorem

First the line integral [ o F - dz = f¢(7) F - dz along the path ¢(y) C R®

will be rewritten as a line integral along the path v C R?. Given a piecewise
C'—parametrization v : [0, 1] — 0K of 0K we get that

P

/ (°> o= [ POO@)) (61 07) (1) d
() \ 0 0

:/0 (P o @)(v(t)) (811 - 7i + Oaghr - 75)(t) dt

0191
= | P -d
/7 °¢ (82¢1> g
and, using Green’s 10.1, that

/(Pogz&)Vqﬁl-dx:/ rot (P o 6)Viy) du.

¥ K
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By the definition of the ’scalar’ rotation in R?

rot (P o @)V¢1) = 01((P o ¢)02¢1) — 02((P o ¢)0161)

= (01(P 0 ¢))02¢1 — (02(P 0 ¢))01¢1 + (P o ¢) [0102¢1 — 0201 1]

- >

=0

= (O\P - 0101 + 02 P - O1¢pg + 03P - 01¢3) 0201
— (O1P - 0291 + 0o P - Oap3 + O3 P - Oap3) 0191

= 0o P (0102 - Oap1 — 0101 - Oap2) +03P (0103 - Oap1 — Dath3 - D161 ),

- o - o

-~

~
=—N3 =N,

since ¢y € C? and N = 0,¢ A O2¢. Now the identity rotF = (0,95P, —0, P)T
yields
rot((P o ¢)Vey) = ((rotF) o ¢) - N .

Summarizing we get

/asF'dx :/(P°¢)V¢1d~’” =/Krot((Po¢)v¢1)du

v

:/((rotF)qu)-Ndu :/rotF-ndo.
K s

Definition

(1) A compact set V C R® is called C'—projected domain w.r.t. the x1x5—plane
iff there exist a compact set K C R? and C'-functions ¢; < ¢, on an open
set containing K such that

V= {(iCl,.TQ,.Tg) =(@,13) eR 2’ € K, (') <23 < (pg(x')}

and OK is parametrized by a piecewise C'-path. Analogously we define
C'-projected domains w.r.t. the zoz3— and the z;z3-plane.

(2) The compact set V is called C'-projected domain iff V is a C'-projected
domain w.r.t. the x1x9—, the zox3— and the x;z3—plane.
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G

<

Fig. 11.5 A C'-projected domain w.r.t. the z;zo—plane

Remark In (1) the 'upper lid’ Sy = ¢(K) defines a regular C'-surface in R®
with parametrization

o K =R, u=21'+ pa(z') = (2", pa(z")) .
)

The normal vector N(z') = (=01, —Da,1)T defines the exterior normal unit
vector N( /)
z
n(z') =
IN(z')]

w.r.t. V. However, for the 'lower lid’ S; = ¢(K) the exterior normal unit vector
(wrt. V) isn(z") = =N(2')/|N(z')|.

Main Theorem 11.3 (Gauss’ Divergence Theorem in R?) Let V be a C'-
projected domain in R® and let F' be a C'—vector field on an open set containing

V. Then
/didea::/ F-ndo.
1% av

Proof Consider F' = (0,0, R)T. Since div F' = 03 R, by 8.14

p2(z')
/ div Fdx = / / OsR(x', x3) dxs | da'’
Vv K \Jopi(z')

B /K (R(2', pa(a)) = R(a', ¢1(a"))) da’
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On the upper lid Sy = ¢9(K) we have F'- N = R N3 = R. Thus
/ R(a:',gpg(x'))da:'z/ F-Nda:'z/ F -ndo;
K K Sa

_/I(R(x',gpl(x'))dx':/ F-ndo.

S1

analogously

On the remaining part of the boundary oV \ S; \ Ss, i.e., on
Sz ={(¢/,23) : 2’ € 0K, p1(2') < 23 < a(a')},

the exterior normal unit vector n exists (except for finitely many segments

{z'} x [p1(2"), p2(z")] with 2’ € 0K, where the parametrization of 0K is not

differentiable). Since ng = 0 for x € S3, we see that F'-n = Rng =0 on S;.
Summarizing we get that

3
div Fdz = /F-ndo=/ F-ndo.
/V ]Zl S; F17%

An analogous proof will be used when F' = (P,0,0) and when F' = (0,Q,0). O

Corollary 11.4 (Integration by parts in R®) Let V. C R® be a C'-projected do-
main and let u, v be C'~functions on an open set containing V. Then fori =1,2,3

/u@wdazz—/(@iu)vdm—k/ uvn;do.
v 1% v

Proof Applying Theorem 11.3 to the vector field F(z) := uve; we get the
assertion, since div F' = u 0;v + (O;u) v and F - n = uvn,. O

Remarks

(1) Theorem 11.3 and Corollary 11.4 hold under weaker assumptions on V': The
compact set V' can be written as the union of finitely many non-overlapping
C'-projected domains. The lids of these projected domains are assumed to
be ‘piecewise C'’ only.

(2) An essentially weaker assumptions on V' has a local character: At every point
x € 9V there exists a neighborhood U C R® such that — after a suitable
rotation of the coordinate system — U N 0V may be written as graph of
a Lipschitz continuous function. In this case the normal vector exists only
"almost everywhere’.

(3) Theorem 11.3 and Corollary 11.4 hold for every space dimension n > 2.

64



