7 The Riemann Integral on Rectangles
Definition

(1) Let Jy,...,J, # 0 be compact intervals of R. Then R=J; X ... x J, CR"
is called a (closed) n-rectangle or simply rectangle of R™.

(2) Let P; be a partition of J; = [a;, b;], to be more precise, let
P:a=co<cy<... < Cik; :b,',
k; € N, i =1,...,n. Then the set of all rectangles

[C1j1s Cljs+1] X = X [Cnns Crgn41]

where 0 < 5, < k; — 1,4 =1,...,n, defines the partition P = P, X ... X P,
of the rectangle R.

(3) The n—dimensional volume of the rectangle R is defined by

n

vol,(R) = |R| := [ [ (b — a).

i=1
Lemma 7.1 Let R C R™ be a rectangle and let P = {S} be a partition of R.
Then
Rl =)_Isl.
SeP
Proof Using the notation of the above definition

k1—1 kn—1

DISI=D 00D (etjier = c1n) - - (Cngust — Cogi) -

Writing the inner sum w.r.t. j, in front of the term (cpj, 11 — cnj,), We get

kl—]. k’n—l*1

Do D))o —an).

Jj1=0 Jn—1=0
Then by mathematical induction [[;_, (b; — a;) = |R|. n

For later use we recall some notions from topology of R*. Given M C R”, the

interior ]\(;[ = M? is defined as the set of all interior points of M. It is easily seen
that
M":U{UCR"\ UcCM,Uis open}
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and that M? is open. Furthermore, the closure M is defined as the union of M
and of all its accumulation points. Obviously,

M= J{ACR"|MC A, Ais closed}

is a closed set. Finally, the boundary OM is defined as the set of all points x € R”
such that every neighborhood of x contains a point of M and of the complement
of M. Thus for every M C R"

M°=M\OM C M C M=MUOM .

Furthermore, 9M = M \ M? is closed; when M is bounded, OM is even compact.

Definition

(1) Let f: R — R be a bounded function and let P = {S} be a partition of the
rectangle R. Then

Lr(P,f)=L(P,f) =) jinf f-|5

SepP

and

are the lower and upper Riemann sum of f on R, resp.

(2) A partition P’ = {S'} of R is called a refinement of P, if for every S’ € P’
there exists an S € P such that S’ C S.

Lemma 7.2 Given a refinement P' of P
L(P f) < L(P, f) <UP', f) <UL f).

Proof We only prove the first inequality, since the second one is trivial and the
third one may be proved analogously. By the definition of a refinement, for every
rectangle S € P there exist finitely many rectangles S7,..., S} € P’ such that

k k
s=Js;. IsI=>_1I5]l
j=1 j=1
(cf. Lemma 7.1). Then
k k
inf f-|S| =) |Si-inf f <> [S}|inff.
° j=1 = TS
Summing over S € P we get L(P, f) < L(P', f). |
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Definition

(1) Let R C R" be a rectangle and let f : R — R be bounded. Then

/f(x) dx = s1113p Lr(P,f)
R

and

/ () da = inf Un(P, /)
R

are called (Riemann’s)lower— and upper integral of f on R, resp. Here, for
supp and infp, all partitions P of R are considered.

(2) If [f(z)dz = ["f(x)dx, then f is called Riemann integrable on R, and its
R R

Riemann integral on R is defined by

/Rf(x) dx = /*f(x) dzx .

Example The characteristic function f = x¢ of a rectangle () C R" is Riemann
integrable on every rectangle R D @), and

/R Yol®)dz = |

By Lemma 7.2 we get the following integrability criterion:

Lemma 7.3 (Riemann’s integrability criterion) A bounded function f
R — R 1is integrable iff for every ¢ > 0 there exists a partition P of R such
that

UP,f)—L(P f)<e.

Theorem 7.4 (1) The Riemann integrable functions on a rectangle R C R"
define a vector space.

(2) The integral has the following properties:
(i) The map f — [, f(x)dz is linear.
(i) If f >0, then [, f(z)dz > 0.
(i) If f < g, then [, f(z)dx < [, g(z)dz.

Proof We only prove the additivity of the integral; the assertion (ii) is trivial,
(iii) is a consequence of (ii). Let f, g be integrable, let ¢ > 0, and let P, P' be
partitions of R such that
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U(P,f) = L(P, f) <&, U(P,g)—L(F'g)<e, (+)

cf. Lemma 7.3. Then there exists a further partition P” of R such that SNS" € P”
forall S € P, S" € P' (if (SN S')° # 0), i.e. a refinement of P and of P'. Then,
for S € P",

inf f +inf g < inf(f +g) <sup(f+g) <supf+supg
s 5 s s s s

and consequently
L(P",f)+ L(P",9) < L(P",f + g) SU(P",f +9) SU(P", f) + U(P", 9).
Since (x) also holds for the finer partition P”,
UP", f+g)—L(P",f+g) < 2.
Hence f + g is integrable and [,(f + ¢)(z)dz = [, f(z)dz + [, g(z) dx. ]

The computation of multi-dimensional integrals on rectangles may be reduced
to the computation of one-dimensional integrals. Let R C R® and ) C R™ be
compact rectangles, and let f : R X () — R be integrable. Then, for every x € R,
consider the function

Jo: Q@ =R, fzc(y) = f(x,y).

If f, is integrable for every x € R on (), we may define the function I : R —+ R
by

H@:Ah@@-

Main Theorem 7.5 (Theorem of Fubini) (Guido Fubini 1879 — 1943)

Let R C R™ and Q C R™ be compact rectangles, let f : R x () — R be Riemann
integrable and let f, = f(z,-) be Riemann integrable on @Q for every x € R. Then
I(z) = fQ fz(y) dy is Riemann integrable on R , and

I(@,y) d(a,y) = /R ( /Q F(o,y) dy) da.

RxQ

Proof For given ¢ > 0 Lemma 7.3 yields a partition P’ of R and P” of @) such
that the partition

P g Pl X P”: {SI X S” . SI E Pl, SII E P”}
of R x () satisfies the estimate

Urxq(P, f) — Lrxq(P, f) < €.
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Then

Lexo(P, f) = Zi%ff-w\:zz inf f-15'| 9"

"
SEP / SII S

= ZZ lgsfv 1nf fz) - 18 1S8"].

s S

Since Y g infe(...) <infg Y 4 (...), we may continue as follows:

Lixg(Pf) < > int (Yinf fo-15" )18

o eSS’
D@
< Lg(P',1("))
< Ur(P',I(")
< - < Ugxo(P f).

By the choice of the partition P and due to Lemma 7.3 we get that I(x) is
integrable on R. Moreover,

/ I@de= [ fa,y)dey).
R RxQ

Corollary 7.6 Let f : Rx (@ — R be Riemann integrable. Assume that for every
x € R the Riemann integral fQ f(z,y) dy and that for every y € Q the Riemann

integral [, f(x,y) dx exist. Then

[ ([ rwnm)a= [ swvien= [ ([ 1w0w)

Remark

(1)
(2)

Under the assumptions of Corollary 7.6 the value of the iterated integrals
I fQ and | 0 [, are independent of the order.

Under suitable assumptions (e.g. for continuous functions, see below) Co-
rollary 7.6 admits the calculation of the integral of f over the rectangle
R =[ay,b1] X - -+ X [ay, by] by the calculation of n one-dimensional integrals:

/Rf(x)dac:/ain (/abn_l---( blf(xl,...,xn1,xn)da:1)---dacn1) dx,, .

n—1 al

The Riemann integrability of f over R x () does not imply that f, is Riemann
integrable for every z € R , see Theorem 7.8 below.
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(4) Fubini’s Theorem holds under much weaker assumptions when using another
notion of integrability (Lebesgue’s integral theory).

Definition

(1) A set M C R" is called a set of (Lebesgue) measure zero iff for every € > 0
there exist countably many (!) closed rectangles (R;);en such that

MCGRi and i\Ri|<e.
i=1 i=1

[Obviously the rectangles may be chosen to be open since for every closed
rectangle R and for every § > 0 there exists an open rectangle 10%5 such that
RC RC Ryand |R| == |Rs| = (1+6)|R]].

(2) Aset M C R" is called a set of Jordan measure zero iff for every ¢ > 0 there

exist finitely many (!) closed rectangles Ry,..., Ry CR* (N = N(e, M) € N)
such that

N N
MCURz and Z|RZ|<6
=1 i=1

Lemma 7.7 (1) M set of Jordan measure zero = M set of Lebesque measure
zero.

(2) M, set of Lebesgue measure zero for every j € N = U;; M; set of Lebesgue
Measure 2ero.

(3) M; set of Jordan measure zero for j =1,...,N = U;VZI M; set of Jordan
measure (.

(4) M C R™ compact (!) set of Lebesgue measure zero = M set of Jordan
measure zero.

Proof The assertion (1) is trivial. To prove (2) consider a set of Lebesgue measure
zero M;, 7 € N and let € > 0. Then for every M, there exist rectangles Rg-, 1 €N,
such that

M, c | JR:, Z\R§\<%, jEN.
1 =1

Consequently, M = Uj M; is covered by the union of the countably many rec-
tangles Ré-, j € N, i € N. Moreover, for every (finite) family of Ré-’s



Thus 37, jyenwn [15] < € independently of the enumeration of (1}).

(3) is proved analogously to (2). In (4) consider for every ¢ > 0 open (!)
rectangles (R;)ien such that M C |J; R; and ), |R;| < €. Since M is compact,
there exist finitely many rectangles R; ,..., R;, such that M C Ujvzl R;;. For

these R;; we get that Z;V:1 |Ri;| <e. n

Consequence Finite subsets of R” are sets of Jordan measure zero, countable
subsets such as Q* C R" are sets of Lebesgue measure zero. The boundary of a
rectangle is a set of Jordan measure zero: For a lateral side of R we get that

{a1} x [ag,bo] X+« X [an,b,] C R :=[a1 —&,a1 + €] X [ag, by] X -+ X [an, by]
and |R'| < 2¢ - [[}_,(b; — a;) for every ¢ > 0.

Main Theorem 7.8 (Lebesgue’s Integrability Criterion for Riemann

Integrals). Let R C R" be a rectangle. A bounded function f : R — R is
Riemann integrable on R iff f is almost everywhere continuous, i.e., there
exists a set of Lebesgue measure zero M C R such that f is continuous at all

points of R\M :
Vee R\M Ve>0 36>0: |f(z)— fly)|<e Vye€ Bs(zx)NR.

Proof: ,<“ Let M C R be the set (of Lebesgue measure zero) of all points
of discontinuity of f and let € > 0. Then there exist countably many open (!)
rectangles (R;);en such that

MCGRJ- and i‘Rj|<€.
j=1 j=1

Furthermore, at every point of continuity z € R\M of f there exists an open (!)
rectangle U, such that z € U, and

\f(x) = f(a")| <e Va',2" €eU,NR.

Consequently R C |J; R; U U, r\u Uz- Since R is compact, we find finitely many
R;;1<j<N,and U; = U,,, 1 <i < N, which cover R:

N N
Rc|JrRuJu:.
j=1 i=1

To satisfy Riemann’s integrability criterion in Lemma 7.3 choose a partition P
of R such that every S € P is completely contained in at least a set R; or U,.
Hence

UP,f) = L(P.f) = )_(sup f = inf f)- |S] = 30, + X

SepP
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where

3>, = Sum of all terms such that S is contained in R,
>, = Sum of all other terms.

Now we estimate ), and ), as follows:

¥ < 2l Y Y 1SI< 20 flleo Z|R | < 2] flloo

J SCR;
o < e) ISI=¢lRl;
SePp

here, for > ,, we use the fact that every set S is completely contained in one of the
sets U; implying supg f — infg f < e. Summarizing both estimates we conclude
that U(P, f) — L(P, f) <e(2||f|| + |R|) and that f is Riemann integrable.  (m)

,=" For the Riemann integrable function f : R — R consider the set M of all
points of discontinuity. Obviously, f is discontinuous at z iff

w(z) = 61_1}1(2L sup{|f(z") — f(z")|: o', 2" € Bs(x) "R} > 0;

here Bs(x) denotes the ball with center z and radius § (note that the expression
sup{...} is increasing in § > 0; thus the limit for § — 0+ exists). Hence

=

M={zeR: w >0}—U{x€R w(z

wlr—k

By Lemma 7.7 (2) it suffices to prove the following claim:

Claim: My = {z € R:w(z) > ¢} is a set of Lebesgue measure zero (and even of
Jordan measure zero).

Proof. For given € > 0 Lemma 1.3 yields a partition P of R such that

UP.f) = LIPS < 57

First consider x € My lying in the interior S of a rectangle S € P. By the
definition of w(z) we get the estimate

(Sgp f—mf f) >w(z) > %

Then for P' = {S € P : dx € Mj such that z € §} the following chain of
inequalities holds:

LISl < Y wp s -inf f)S

SeP! SeP!

< UPf) - L(P,f) < =
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and consequently

Z|S|<;

Sep’

Furthermore there exist points x € M}, lying on the boundary 05 of a set S € P.
Summarizing we get that

M,c |Jsul]os,

SeP! Sepr

where | J4 0S5 is a set of Jordan measure zero. Hence M, may be covered by finitely
many rectangles of volume < e. (m) m

Consequence Every continuous function f : R — R” is Riemann integrable.

Theorem 7.9 Let f and g be Riemann integrable functions on the rectangle
R CR".

(1) The functions |f|, f*, f~, max(f, g), min(f, g), f-g are Riemann integrable.

‘/f dx‘</\f )| dz .

) If f = g almost everywhere in R, i.e., there erists a set of Lebesgue
measure zero M C R such that f(z) = g(z) for all x € R\M, then

/Rf(:v)dx:/Rg(x)da:.

Warning: Assertion (3) does not claim that the integrability of f and the property
f = g almost everywhere yield the integrability of g.

Proof (1) is proved by Theorem 7.8. (2) is a consequence of Theorem 7.4.

(3) Apply the ideas of the part ,,<=* of the proof of Theorem 7.8 to h = f — g
and show that fR hdz = 0. To be more precise, let My and M, be the set of all
points of discontinuity of f and g, resp., and let

M=M;uM,U{zeR: f(z)#g(x)}.

Since M is a set of Lebesgue measure zero by Theorem 7.8, there exist open
rectangles I?; such that

MCURj, Z|Rj|<6.
J J

Furthermore, at every x € R\M — a point at which A is continuous and h(z) =0
— we find an open rectangle U, such that z € U, and

lh(y)| <e forallyeU,.
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Since R is compact, there exists a finite subcovering, say
N No
Rc|JRrRuJU.
j=1 i=1

Then we choose a suitable partition P of R such that every S € P is completely
contained in some R; or in some U;. Now we obtain the following estimate:

Ny N»
Ul < [ X swhelsl 4 |30 3 swhels]|

J=1 SeP,SCR; =1 5eP,SCU;
< Ao - € + ¢|R|.

Analogously, we prove that |L(P, h)| < e(||h|| + |R]). Consequently, the integral
of h over R vanishes. ]
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8 The Riemann Integral on Jordan Measurable Sets

Definition

(1) Let A C R" be an arbitrary set and let f : A — R. Then the extension of f
by 0 onto R” is denoted by f4 : R* — R. i.e.,

) f@), z€A
fA(ﬂC)—{O’ vd A

(2) Let ) # A C R" be bounded and let R D A be a closed rectangle. A bounded
function f: A — R is called (Riemann) integrable iff the extension f4 onto
R is Riemann integrable. In this case the (Riemann) integral of f on A is

defined by
/f(ac)dac ::/fA(ac)d:r.
A R

[It is easily seen that this definition does not depend on the choice of the
rectangle R D A/]

(3) A non-void bounded set A C R™ is Jordan measurable iff its characteristic
function x4 : R* — R, i.e., xa(z) = 1for z € A, xa(x) =0forx & A, is
Riemann integrable. In this case

A ::/Aldx:/RXA(x)dm

is called the n-dimensional Jordan content (area, volume) of A. Finally let

0] := 0.

Lemma 8.1 A bounded set A C R" is Jordan measurable iff its boundary 0A is
a set of measure zero in the sense of Lebesque (or in the sense of Jordan).

Proof Choose a closed rectangle R D A. Then the definition of Jordan measu-
rability and Theorem 7.8 imply that A is measurable iff the set of all points of
discontinuity of x4 in R, i.e. the set 0A, is a set of Lebesgue measure zero. Since

0A = A\ ,401 is closed and consequently even compact, by Lemma 7.7 A is Jordan
measurable iff 0A is a set of Jordan measure zero. [

Theorem 8.2 Let ) # A C R* be Jordan measurable. A bounded function f :
A — R is Riemann integrable on A iff f is almost everywhere continuous on
A. In particular, a continuous function on a compact Jordan measurable set is
Riemann integrable.
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Proof ,=“ If f is integrable on A, then by definition f4 is integrable on a
rectangle R D A. Due to Theorem 7.8 the set of points of discontinuity My,
of f4 is a set of Lebesgue measure zero in R. Hence, also the set of points of
discontinuity of f in A is a set of Lebesgue measure zero.

»<" By assumption the set of points of discontinuity My of f in A and also 0A
are sets of Lebesgue measure zero. Hence My, C M; U 0A is set of Lebesgue
measure zero in R implying that f is integrable. ]

Theorem 8.3 Let ) # A C R" be Jordan measurable, let f,g : A — R be
Riemann integrable on A and let ¢ € R. Then

f+g, cf, £, 7, |f], max(f, g), min(f,g)

are Riemann integrable on A as well. Furthermore,

/A(f-i-g)d:v:/Afdm—i-/Agdac, /Acfdm:c/Afdm

\/Af(@dw\ S/Alf(a:)ldx.

Proof All statements are consequences of Theorem 7.4. E.g., (f+9)a = fa+9a,
(ff)a = (fa)". For a closed rectangle R D A the estimate

[ sda= [ fado< [ \palda= [ flade= [ \fido

holds. Analogously, — [, f < [, [f]. n

and

Lemma 8.4 If A, B C R" are Jordan measurable, then AU B, AN B and A\B
are Jordan measurable as well.

Proof Since d(AUB) C 0AUOB, d(ANB) C 0AUOB and 0(A\B) C 0AUJOB,
the assertion follows from Lemma 8.1. n

Theorem 8.5 Let A, B C R" be Jordan measurable sets, and let f: AUB — R
be Riemann integrable on both A and B. Then f is Riemann integrable on both
AUB and AN B, and

/AUdex:/Afd:c—l-/dex—/Aand:c.

In the case that AN B = ( the definition f(b fdx =0 has to be used.
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Proof By Theorem 8.2 and by Lemma 8.4 f is Riemann integrable on both AUB
and AN B.
Firstly let AN B = () and let R be a closed rectangle such that AU B C R.

Since faup = fa+ fB,

AUBf=LfAUB:LfA+LfB:[4f+[9f.

If AN B # (), we apply the identities

A=(A\B)U(ANB), B=(B\A)U(BNA),
AUB = (A\B)U(B\A)U (AN B);

here U indicates that the sets are pairwise disjoint. Now the part proved above
implies that

[ = U S U o= o L

:fAuB f

Corollary 8.6 Given Jordan measurable sets A, B C R"

|AUB| = |A|+ |B| - |AN B|
ACB = |A| <|B]|.

?

Corollary 8.7 Let A,B C R" be Jordan measurable and non-overlapping, i.e.,

AN B C 0AU OB (or equivalently ANB = 0). Then |AU B| = |A| + |B|. If
f:AUB — R is Riemann integrable on both A and B, then

/AUdex:/Afdm—F/dex.
W, )

/

Fig. 8.1 Non-overlapping and overlapping sets
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Proof If AN B = (), then
Ach(ﬁuaA)m(feuaB)c(ﬁmé)uaAuaB:aAuaB.

Since ANB C ANB and ANAA = 0, BNOB = (), the assumption ANB C 0AUOB

yields ;1 N é = (). Hence both conditions for non-overlapping sets are equivalent.

To prove the integral identity it suffices, due to Theorem 8.5, to show that
Janp [ dz = 0. By assumption ANB(C AUIB) is a set of Jordan measure zero.
Hence, given € > 0 there exist closed rectangles Ry, ..., Ry, such that

N N
ANBC|JRi and ) |R<e.

=1 =1

Then using M = || f|lcc < 0o and Corollary 8.6

N
\/ 7| < Man B < M||JR
ANB hagt

N
SMZ‘RZ‘ < Me.
=1

Since € > 0 is arbitrary, the assertion is proved. [ ]

Remark 8.8 (1) The proof of Corollary 8.7 shows that an integral over a set of
Jordan measure zero vanishes. In particular, |A| = 0 for every set of Jordan
measure zero A.

(2) Changing the integrand on a set of Jordan measure zero does not change the
value of the integral.

(3) Since for a Jordan measurable set A the boundary is a set of Jordan measure

zero,
/Zfdx:/Afdx:/dex.

The following theorems deal with the construction of Jordan measurable sets
and consequently also with the construction of sets of Jordan measure zero as
boundaries of a domain of integration.

Theorem 8.9 Let the function f be Riemann integrable on the Jordan measu-
rable set A C R*. Then the graph

G(f) ={(z, f(z)) e R"™ 1z € A}
is a set of Jordan measure zero in R*T,

Proof Choose a closed rectangle R D A and € > 0. Since f4 is integrable on R,
there exists, see Lemma 7.3, a partition P = {S} of R, such that

Un(P, f) = La(P, f) = 3 (sup f —inf )IS| <=.

SepP
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Obviously the union of all cartesian products S X [infg f,supg f] C R**! defines
a covering of G(f4) consisting of finitely many closed rectangles. Hence |G(f)| <
IG(fa)l <e. n

Lemma 8.10 Let A C R" be a set of Jordan measure zero, let ¢ > n and let
g: A — R? be Lipschitz continuous. Then g(A) is a set of Jordan measure zero
in RY. [In general, for ¢ < n this assertion is wrong.|

Proof First note that for every ¢ > 0 there exists a covering of A by finitely
many compact cubes Cy, 1 < k < N, of equal side length with the property
SV |Ck| < €. To find this covering we start with a covering of A by finitely
many closed rectangles R;, 1 < i < M, such that > |R;| < -2 Let § >0
denote the smallest side length of all R;. Then for every R; there exist finitely
many cube Cj ; of side length § such that R; C |J, Cy,; and ), |Ck ;| < 2™|R;].
Now all cubes (Cy;),; cover the set A and ), . |Cy | <e.

Let L > 0 be a Lipschitz constant of g using the maximum norm in R” and
in R?. Given € > 0 cover A by compact cubes (Cy), k =1,..., N, of side length
0 < 1 such that

N

Z‘C}C‘ =Ni"<e.

k=1
If ANCy # 0, fix a point z;, € ANCy. Then every x € ANC, satisfies ||z —xzx|| < 9§
yielding the estimate

lg(z) — g(zx)l| < L6

Hence g(ANCy) is contained in a cube @ C R? of side length 2L§. Summarizing
we get that

9(4) =Ja(An ) c | Jw

and, since 0 < 1 and ¢ > n,

N
3" Qx| < N(2L8)" = (2L)7 - N&" - 69" < (2L)’% .
k=1

Lemma 8.11 Let G C R" be an open set, let ¢ > n and let g : G — RI be
continuously differentiable. Then the range g(A) of every compact set of Jordan
measure zero A C G is a set of Jordan measure zero in RY.

Proof Since A C G is compact, A may be covered by finitely many compact
cubes Cy C G. By Lemma 8.10 g(A N Cy) being the image of A N Cy under
the Lipschitz continuous function g| Cu is a set of Jordan measure zero. Then the

identity g(A) = J, 9(A N C}) proves the assertion. n
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Theorem 8.12 Let g : G — R"™ be an injective, continuously differentiable func-
tion on an open set G C R" and let the functional matriz Dg(z) be invertible for
every x € G. Then the image of every compact Jordan measurable set under g is
compact and Jordan measurable.

Proof By assumption and the Inverse Function Theorem the inverse g ! :
g9(G) — R™ is continuous; hence g maps open sets to open sets.

Let A C G be compact and Jordan measurable. Then g(A) is compact and
0g9(A) C g(A) = g(A) C ¢g(G). Since 0A and by Lemma 8.10 g(0A) are sets of
Jordan measure zero, it suffices due to Lemma 8.1 to show that

dg(A) C g(0A)

(actually 0g(A) = g(0A) ).

Let y € dg(A) C ¢g(@). Since g(G) is open, there exist sequences (yx) C g(A)
and (y,) C 9(G)\g(A) = g(G\A) converging to y as k — oo. The continuity of
g~' implies that the sequences (¢7*(yx)) C A and g7 (y;) C G\A converge to

g1 (y) as k — oco. Hence g !(y) € DA and consequently y € g(0A). n

Theorem 8.13 Let A C R be Jordan measurable and let f : A — Ry be
Riemann integrable. Then the ‘ordinate set’

H(f)={(z,y) eR* xR, :z€ A, 0<y<f(x)}

is Jordan measurable and has the (n + 1)—dimensional volume

[H(f)| = [ f(z)dz.

A

Fig. 8.2 The ordinate set of f : A C R* — R,
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Proof First we prove the Jordan measurability of H(f) and define M :=sup, f.

If f is continuous at a point z € ;1, then (z,y) € H(f)° for all 0 < y < f(x).
Due to this remark we get the inclusion

O0H(f) C (0Ax[0,M)U(Ax{0})UG(f)U
{z € A: z is a point of discontinuity of f} x [0, M].

Here 0A x [0, M] is a set of Jordan measure zero in R"*™, since it is true for
0A C R". By Theorem 8.9 both A x {0} and G(f) are sets of Jordan measure
zero. Finally, by Theorem 7.8, the fourth set in the above inclusion is a set of
Lebesgue measure zero. Hence 0H(f) is a set of Lebesgue measure zero and —
due to its compactness — even a set of Jordan measure zero. This proves the
measurability of H(f).

To compute integral we choose a closed rectangle R O A. Since H(f) C
R x [0, M], by definition and by Fubini’s Theorem

[H(f)] :/RX[OM] xu(p(z,y) d(may)Z/R(/OMXH(f)(ﬂf,y)dy)dx-

For every x € A the inner integral equals fOM X[0,f(=)](¥) dy = f(x); however, it
vanishes for z € R\ A. Thus we conclude that |H(f)| = [, f(z)dz. ]

Definition A (two-dimensional) projected domain with respect to the x—azis is a
set A C R? of the form

A={(z,y) €R?: a <z <b, p(z) <y < P(2)};

here a < b and ¢, € C%a,b] such that ¢ < ¢ are given.

\%

Fig. 8.3 A projected domain
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Theorem 8.14 Let f : A — R be a continuous function on a projected domain
A=A(z,y) :z €[a,b], p(z) <y <+p(x)}. Then

/Af(x,y) d(z,y) = /ab (/;:) f(m,y)dy) dz .

Proof As in the proof of Theorem 8.13 we conclude that A is Jordan measurable.
Let m = min ¢, M = max and let R = [a,b] X [m, M]. Then Fubini’s Theorem
yields

/A [(@,y)d(z,y) = /R Fa(o,y) d(z, )

= /ab (/meA(x,y)dy) dz
_ /ab (/w(z)f(x,y)dy) do .

o(x)
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9 The Change of Variable Formula

From Analysis I the Change of Variable Formula is well-known: Let f : [a,b] — R
be continuous and let g : [, B] — R be a continuous differentiable bijection of
the interval [, 5] onto the interval [a, b] such that ¢’ > 0. Then

(z) dz = flg(t))g'(t) dt .
[a,5] [,8]

Here the different “infinitesimal increments” dz and ¢'(t) dt can be interpreted as
follows: From = = g(t) we get ‘;—f = ¢'(t), hence “dz = ¢'(t) dt”, i.e., the interval
[t, t+ dt] of length dt is mapped by ¢ onto the interval

g([t, t+dt]) = [g(t), g(t +dt)] = [g(t), g(t) + ¢'(t) dt] = [v, x + dx]

of length dz = ¢'(t) dt. If ¢’ < 0 and consequently g(a) = b, g(8) = a, the above
formula stil holds in the more general form

/ f@de= [ Fla@)ld@)dt:
9([e,B]) [a,8]

here [a, 8] and g([e, 5]) denote the intervals with end points « and 8 or with a
and b, resp., independently of the orientation a < for B < aand a < bor b < a.

Now the question of the n-dimensional analogue of the infinitesimal volume
dr = dz; - ... dr,, when applying a C'-mapping z = g(t), arises.

L, X,

Fig. 9.1 Transformation of a partition

Let ai,...,a, € R" be linearly independent vectors, and let V(a4,...,a,) be
the n-dimensional “volume” of the parallepiped P spanned by as,...,a,, i.e.,

n
P(al,...,an)z{Ztiai:ﬂgtigl,i=1,...,n} .
i=1
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Obviously, we get the following properties:

V(ar, .. s Xy ...,ap) = AV(a,...,a,) for A >0 (V1)
V(ar,...,a; +a, ..., ap) = V(a0 0p)
+Vi(ar,...,al,...,a,) (V2)
V(ary - yiyeeeyQiyeeayay) = 0 (V3)
Ve, ... en) =1 (V4)

a

Fig. 9.2 Parallepipeds

(V3) implies that a degenerate parallepiped for which two spanning vec-
tors coincide has volume equal to 0. From (V2) with a; = —a; and from
V(ay,...,0,...,a,) = 0, cf. (V1) with A = 0, we get that (V1) even holds
when A < 0. Hence the mapping V' takes on also negative values and doesn’t
coincide with the volume |P(ay,...,a,)| considered in Sections 7 and 8. On the
other hand, (V1) (for all A € R) and (V2) imply that

V:RPx..xR*"—=R

is linear in every component, i.e., it is multilinear.
From Linear Algebra it is well-known that there exists a unique multilinear
mapping satisfying (V'1) - (V'3) and normalized by (V4), namely the determinant

det : R" x...xR" = R.

Hence V' = det.
Let A:R" — R" be a linear mapping (matrix) with column vectors

a; = Ae;, 1 <1 <n.
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Obviously A maps the unit cube P(ey, ..., e,) onto the parallepiped
A (P(e1,...,en)) = P(Aey,...,Ae,) = Play, ..., ay) .
Then the determinant of the linear mapping A is defined by
det A:=V(ay,...,a,).

Hence the nonnegative number |det A| equals the volume of the parallepiped

P(ay,-..ap).
Let A be an invertible linear mapping (det A # 0), and let
1
! o by) = ——V(Ab, ..., Ab,) .
Vv (b17 7b ) det A V( b17 ) )

Evidently, V' satisfies the axioms (V1) - (VV4). Due to the uniqueness assertion
above V' = det = V. Thus

V(Aby,...,Ab,) =det A-V(by,...b,);

the “volume” of the parallepiped P(Aby, ..., Ab,) = A P(by,...,b,) equals the
“volume” of P(by,...,b,) multiplied by det A. We conclude:

| det A|is the scaling term for the n-dimensional
volume under the linear mapping A.

For further calculations with determinants we cite the following results from
Linear Algebra.

Expansion Theorem of Laplace For a matric A = (a;;) € R*" and for
i, € {1,...,n} let A;; € R*"1>"~1 denote the submatriz of A when leaving out
the ith row and the jth column. Then for fized i € {1,...,n}

det A = Z(—l)i—i—ja,’j det Aij
j=1

(Ezpansion according to the ith row) and for fized j € {1,...,n}

det A = Z(—l)”jazj det Aij
=1

(Ezxpansion according to the jth column.)

Example By mathematical induction on n it is easily proved that

a1 0
9292 0

det ) = ay; det = ...=Qa11022" ... Qnp -
0 Ann
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Theorem 9.1 (Change of Variable Formula) Let G C R™ be open, let g : G —
R™ be continuously differentiable, injective and assume that either det Dg(t) > 0
on G or that det Dg(t) < 0 on G. Furthermore, let T be a compact Jordan
measurable subset of G and let f : g(T) — R be continuous. Then

f(2) da = / F(g(t)) | det Dy(t) | dt .
9(T) T

Thus, formally, the change of variables x = g(t) yields dx = | det Dg(t)|dt.

Proof By Theorem 8.12 ¢(T') is Jordan measurable. Since g € C'(G) and con-
sequently the mapping f(g(t)) | det Dg(t) | is continuous w.r.t. ¢, both Riemann
integrals are well-defined.

We will show in three steps that it suffices to prove the Change of Variable
Formula in a much simpler situation.

Claim 1 It suffices to prove the Change of Variable Formula for compact rec-
tangles S C T.

Proof Assume that the Change of Variable Formula holds for arbitrary com-
pact rectangles S C 7. Since T is a compact subset of the open set G,
do := dist (T, G°) > 0. Then

d
Gy = {x e R* : dist (z,7T) < 50}
is open and G| is a compact subset of G. Consequently,
L :=max||Dg(t)|| < oo.
teGo

Since dT is compact, for any € > 0 there exist compact cubes C;, 1 <i < N, of
equal side length § < dy/2 such that

N N
orc|Jo:, Y IGI< 4
1=1 =1

Now consider a partition of R" consisting of cubes S of side length ¢ and
define
P={S:5NT #(}

and its subsets

Po={SeP:SNdT =0}, P ={SeP:SNIT #0}.
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R

Fig. 9.3 The partition P
We will use the Change of Variable Formula on
T() = U S
SePy

whereas the integrals on S € P; will be estimated by ¢.
If S € P, the properties SN AT # @ and 0T C UZN:1 C; imply that there
exists an ¢ € {1,..., N} such that SN C; # (). For this 4,

> 18I< (30)" =3"Cyl
SePy, SNC; #0

Hence

N
Y ISI<3" ) |Gl <«

SeP; i=1

and, since 7'\ 1o C Ugep, S,
T\ Tyl <e.

Since S € P is even contained in Gy, the function g is Lipschitz continuous on S
with Lipschitz constant L. Now, as in the proof of Lemma 8.10, for every S € P

9(S)] < (2L)"[S].

Furthermore the injectivity of g implies that

g(M\g(Tp) =g(T\To) cg(|J )= (] 9(9).

Sep, Sep,

Thus we get the estimate

9(T)\g(To)l < D lg(S)| < (2L)" Y S| < (2L)" .

Sep; Sep,
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In the following let
o(t) := f(g(t))|det Dg(t)|, M :=max(||¢llso,r s ||flloc,g(r))-

Since the rectangles S € P, as well as their images ¢(S) are non-overlapping
(note that g(S)Ng(S") =g(SNS") C g(dSNAS’") C dg(S)Nadg(S’)), Corollary
8.7 yields

z)dx = dt .
I /TOW) i

Moreover, we may use the estimates

/ (p(t)dt‘ < M|T\Ty| < Me
T\To

and
< Mlg(T)\ g(To)| < M(2L)"e .

/ f(z) dz
9(T)\g(To)

Summarizing we conclude that
| fg(T) f(.l“) dx — fT Qp(t) dt|

<| fg(T)\g(Tg) f(z) de] + | fT\T0 (1) dt|
< M1+ (2L)")e .

Since € > 0 can be chosen arbitrarily small, we get that fg(T) fdz = [, @dt.
Hence Claim 1 is proved. (0)

The next steps are part of a lengthy mathematical induction on the dimension
n. The beginning of the induction (IB) n = 1 is given by the one-dimensional
Change of Variable Formula from Analysis 1. In order to apply the induction
hypothesis (IH), i.e. the validity of the Change of Variable Formula in R*™!, we
need a local factorization of g into simpler functions.

Lemma 9.2 (Lemma of Factorization) Let G C R™ be open, n > 2, and let
g: G — R" be a C'function with det Dg(t) # 0 for all t € G. Then for every
to € G there exist an open neighborhood U C G of ty and injective C*—functions
h, 1) with the following properties:

g=hot,
Y(U) C R" is open, and choosing a suitable enumeration of indices, for t =
(tla"'atn)a Y= (yla"'ayn)

91(t) Y1
lp(t) N gn—'l (t) ’ h(y) B Yn—1
ln I (y)
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Postponing the proof of this Lemma we first of all consider mappings of the
type h.

Claim 2 The Change of Variable Formula holds for injective C*—mappings h of
the type h(y) = (Y1, - - -, Yn—1, hn(y))?T with det Dh(y) # 0.

Proof By Claim 1 it suffices to prove this claim for rectangles R = [a1,b1] X ... X
[an, by] only. Due to the structure of A

1 0
Dhiv) — : ’
(y) . 0
Otha(y) -+ On1hn(y) Onhn(y)

such that the Expansion Theorem of Laplace (expansion according to the nth

column) yields
Onhyn(y) = det Dh(y) # 0 for all y € R.

Assume without loss of generality that d,h,(y) > 0 on R implying that for every
fixed y' = (Y1, .., Yn_1) € R :=[a1,b1] X ... X [ay,_1, b, 1] the mapping

hn(y,, ) : [ana bn] =R, yp— hn (y,: yn)a

is strictly increasing. In particular,

h(R)={(",yn) 1y € R, hu(¥', a0) < yn < (v, by) }

is a projected domain, cf. Section 8. Then Fubini’s Theorem and a trivial gene-
ralization of Theorem 8.14 to R™ prove for a continuous function f that

/f )) | det Dh(y)| dy

/f (y) dy

- / ([ 00 h0)) Bula ) )

hn(y' bn)
/ / fly',s ds) dy’
/ n y 7an)

= / f(z) dx .
h(R)
()

Claim 3 Assume that the Change of Variable Formula holds in R* . Then it
holds in R* as well.

Proof By Claim 1 it suffices to prove the Change of Variable Formula for rec-
tangles R C R" only. By Lemma 9.2, for every t € R, there exists an open,
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rectangular neighborhood U; of ¢ such that g|y, can suitably be factorized. Since
R is compact, R may be covered by finitely many open sets Uy, , 1 < j € N.
Partitioning R we may assume that

with compact non-overlapping rectangles R; such that each R; is contained in
some Uy,. Since g possesses a factorization on every Uy, it suffices to consider the
case g = ho1 on a compact rectangle R with R C U, U an open rectangle. Note
that Claim 2 yields

dz = dx = F(y)d
9(R) ) de /h(w(R))f(x) ’ /w(R) W)y

F(y) = f(h(y)) | det Dh(y)] .

Now we write R = R' x R, with R C R"!' R, = [a,,b,] C R, and t =
(t',tn), y = (¥, yn). Furthermore, due to the special form of ), we may define for
fixed ¢, € R, the function ;, : R" — R*"! by

where

Yt (tl) = (gl (tla tn)a R gnfl(t,a tn))T

and try to apply the Change of Variable Formula to 7, (-).

Since R = R' x R, C U =: U'" x U,, the function 7, (-) is a C'-mapping
on U' C R*! for every t, € R,. Its Jacobi determinant det Dv;, (-) will be
computed as follows: The product rule of differentiation applied to g = ho yields
Dy(t) = Dh(y) - Dy(t) for y = 1(t) and the product rule for determinants shows
that det Dg(t) = det Dh(y) - det D1)(t) . Since det Dg(t) # 0, also det Di)(t) # 0
for all ¢ € U. Finally, by the Expansion Theorem of Laplace,

01g1 T On-1G1 On g1 *
_ : : : _ Dy, (¢
Dy(t) = = Tt
81gnfl o 6nflgnfl angnfl *
0o - 0o | 1 0 -~ 0]1

leads to the formula
det Dy, (t') = det D (t) .

In particular, det D, (t') # 0 on U’. Hence, even det Dy, (t') > 0 in every t' € U’
(or < 0 for all ¢ € U'). Actually, v, (-) is injective on U’ since 9 is injective on
U. We conclude that 7;, satisfies the assumptions of Theorem 9.1 on U’ C R*~!
and that the induction hypothesis may be applied.

40



Using y = ¢(t) = (m, ('), tn) , t' € R, t, € R,, a twofold application of
Fubini’s Theorem and the induction hypothesis show that

/ F(y) dy
i)
(

[ F ). | det Dy 0 dt') at
RI

n

F(y(t)) | det D(t)] dt .

I
m\:c\m\

Since f(ho4(t)) = f(g(t)) and
| det Dh(3(t))| | det Dy(t)| = | det Dg(2)],
the assertion

/ fa dx_/f )) | det Dg(t)| dt

is proved thus completing the induction step (IS) from n — 1 to n. (m)

Finally we prove Lemma 9.2. At t, € G expand Jacobi’s determinant of g
according to the nth row to get

algl Tt 8ngl n
0 # det Dg(to) =det | | = D=1 Bga(to) Gr(to)
algn e 6ngn k=1

with subdeterminant G (). In the above sum at least one term Gy(ty) # 0.
Therefore, asume that

oig1 r Ohgn
0 # Gp(te) = det : : (to) -
algn—l e an—lgn—l
By the Inverse Mapping Theorem there exists an open neighborhood U of to on

which ¢ is injective.
As in Lemma 9.2 define
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the Inverse Mapping Theorem yields an open neighborhood U C U of to such
that 1|y is a bijection from U onto an open neighborhood V' of 9(ty); its inverse
o= (Y|y) t:V = Uis a C'~function as well. Now define on V the C'—function

h(y) = (Y1, Yoty Gn(@1(Y)s- s 001 (¥), Ya)) -

By construction, for ¢t € U,

h(ﬂ)(t)) = (gla -+ 09n-1> gn((pl © w, ce3Pn-10 11% tn)) (t) = g(t) )

moreover, h is injective on V' = 1 (U), since 3 and g are injective. Hence the
functions h and ¢ define the desired factorization of g on U. (m)
Now Theorem 9.1 is completely proved. [ ]

Appications of the Change of Variable Formula
Example (Polar coordinates in R?)

1. Writing z € R? in polar coordinates, i.e.,
[z _ ___[rcosgp
x = <$2> =g(r,¢) := (T,Sinq))

[ cosp —rsingp
Dyg(r,¢) = ( sing  rcosp )

we get that

and consequently

det Dg(r,p) = rcos’ ¢ +rsinp =r .

Let
G={(r,o):r>0,0<¢<2r}

and let 7" C G be a compact, Jordan measurable subset. Then for every
continuous function f: A =g¢(T) - R

/Af(:c)dx:/Tf(rcosga,rsingp)rd(r,gp).

Very often T is a set of the type T = [rq, 7] X [¢1, 2] such that Fubini’s
Theorem yields
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B/_cbl/\q) !

Fig. 9.4 Transformation to polar coordinates

T2 Y2
/f(x)d:r:/ r( f(rcosgo,rsingp)dgp) dr.
A 1 P1

If f is even radially symmetric, i.e., f(x) = f(r) with a continuous function
f, the inner integral is elementary, and we get

[ @ de=(e= o0 [ rFr)dr.

. However, wusually 7T is a compact subset of the closed strip
{(r,¢) :7>0,0<¢ <27} on which ¢ fails to be injective (note that
g(r,0) = g(r,2m)); furthermore, det Dg = 0 for r = 0. Since in this si-
tuation Theorem 9.1 cannot be applied directly, a further limit procedure
is necessary.

Assume that f € C°(Bg(0)) and that T = [0, R] x [0, 27]. Defining 7, =
[e, R] X [e,2m — ] for € > 0 we get that

(x)dz = [ f(rcosp,rsing)rd(r,y).
Q(Ts) T.

Since |T\ T.| < 2(m + R)e and |¢(T) \ g(T:)| — 0 for ¢ — 0, we conclude,
as € — 0, that

/ f(z) dx:/f(rcosgp,rsingo)rd(r,gp).
9(T) T
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3. If f is not bounded and consequently not Riemann integrable, [, f(z)dz
must be intepreted as an improper Riemann integral.

E.g., we consider

f(z) = |z|"* on B = By(0) \ {0}

and define B, = {z € R? : ¢ < |z| < 1}. Then per definitionem let

/ f(z)dz :=1lim [ f(z)dx,
B e—0 B.

provided that the above limit exists. By (1), (2)

1 27
|z|~* dx :/ (/ ldyp)r~®rdr
B € 0

2T

as € — 0+, if @ < 2. Thus

2
/madm: 2q »@<?2
B o0 , o> 2.

We conclude that there exist unbounded functions such as |z|~® (for 1 <
« < 2) which are integrable in a neighborhood of the origin of R? although
they are not integrable on R!.

4. If B is unbounded and consequently not Jordan measurable, then f g f(x)dz
may exist as an improper Riemann integral.

As an application we consider the integral fn@ e~ 17" dz and define the ap-

proximating sets Bg = Bg(0) and Qr = {z € R? : ||z]|c < R} . By (1), (2)
we get that

R

—|rl2 _p2 2
/e“c da::/ 2nre”" dr = — we™ "
Br 0

such that in the sense of an improper Riemann integral

_ 2
e PP de =7
R?

On the other hand, since QR/\@ C B, C Qgr,

/ e 1" dx < / e 17" dg < / e 171" dg .
Qr/vz Br Qr
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Hence Fubini’s Theorem yields

2 R R 2 2
7= lim e *" dz = lim (/ e 1T dxg) dx,

R—o00 Qr R—o0 _R _R
_ oy R 2 g6)? * 2 gg)?
_Rf;o(/Re s)—(/ooe 5)°.

By this means we prove the formula

/ e ds=+/m (GauB’ error function)

which is of the utmost importance in statistics (normal or Gaussian distri-
bution) and in the theory of partial differential equations (heat equation).

Example (Cylindrical Coordinates in R®) In axisymmetric problems cylindrical
coordinates

TI=TCOSP, Tg =TSing, 3 =2
will be used. For z = g(r, p,2) = (rcos g, rsing, z)T

cosp —rsing 0

det Dg=det | sinp rcosp 0 | =r>0.
0 0 1
X34
Z
r— (I)
N

%
—

Fig. 9.5 Cylindrical coordinates

Let T be a compact subset of the domain

{(ryp,2):7>0,0< ¢ <27, z € R}
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and let B = g(T). Then, for f € C°(B),

/f(a:)d:c:/f(cosgo,rsingo,z)rd(r,gp,z).
B T

If T is a box of the type [r1, o] X [@1, 2] X [21,22] With 0 < 7r; <719, 0 < ¢ <
@y < 2m (note that 71 = 0 and ¢; = 0, @9 = 27 are allowed in the sense of
improper Riemann integrals), Fubini’s Theorem yields

/Bf(x) da::/2122 (/ﬁ?‘z ( :2f(7“cos<p,rsing0,z)d<p) rdr) dz .

Example (Polar or Spherical Coordinates in R®) Every point x = (z1, 79, z3)7 €
R3 with 22 + 23 + 23 # 0 can be written in the form

Ty =rcosvcosp, xy=rcosvsing, x3=rsind
with 7 >0, =2 <9 <7, 0 < ¢ <27 For the change of variables
g(r,9, ) = (rcosvcos @, rcosdsin g, rsind)”
we get Jacobi’s determinant

coscosp —rsindcosy —rcosdsing
det Dg(r,9,p) =det [ cosdsing —rsindsing rcosdcosp
sin 1 r cos v 0

= —r2cos? <0

(but det Dg = 0, if 9 = —7).

Fig. 9.6 Polar coordinates
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Let T be a compact subset of {(r, d,0):r>0, 9 <5,0<p< 27r} and let
B = ¢(T). Then, by the Change of Variable Formula, for f € C°(B)

/f(ac)dx:/f(rcosﬁcoscp,rcosﬁsingp,rsim?)rzcosﬁd(r,ﬁ,go).
B T

Again this result holds even when r > 0, || < ¥ and 0 < ¢ < 27. For T =

[T‘l,’f'g] X [’191,792] X [g01,g02] with 0 <r < 7‘2,—% < ’191 < 192 < % and 0 < p1 <
w9 < 27, Fubini’s Theorem allows an iterated calculation of the integral on 7.
Note that polar coordinates may also be used in the form

xy =rsindcosp, xp=rsindsing, x3=rcosv

where the angular variable ¥ € (0, 7) is measured between x and the e3 - axis. In
this case Jacobi’s determinant equals det Dg(r, 9, ¢) = r?sind > 0.
Now we get for the volume of the three-dimensional ball Bg(0)

R s 27
|Br(0)| :/ r (/ sinﬁdﬂ) (/ dgp) dr
0 0 0
R
4
:2-27r/ r2dr = "R
0 3
Example (Polar Coordinates in R™) In this case we have to introduce — in
addition to the Euclidean distance » > 0 — altogether n — 1 angular variables
0<by,...,0, o<m, 0<6, <27,

T

to write x = (z1,...,2,)" in the form

T1 =rcosbty
Ty = rsin 6y cos Oy

T3 = rsin #; sin Ay cos O3

Tp_1 =1rsinf;sinfy-...-sinf,_4cosb,_;

T, =rsinf;sinfy-...-sinb,_,sinf,_; .
The corresponding Jacobi determinant is

Dg(r,0y1,...,0,_1) =7r""'sin" 20, -sin" 20y - ... -sinf,_,.
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