6 Curves and Line Integrals

Definition A parameterized path (arc, curve) in R™ is a continuous map

y:I >R t—=y(t) = (n(t),. .., ()

on a compact interval I C R. The path ~ is called differentiable or continuously
differentiable iff all components 7;(t), 1 < i < n, are differentiable or continuously
differentiable, resp.

If «v is continuously differentiable, in short, v is a C'—path, then for ¢t € I

V() = (n@),--- ;@) ER

is called the tangential vector of the curve v at the parameter value ¢. If v/(¢) # 0,
then vy is called regular at the parameter value ¢. In this case, the normalized vector

v'(t)

' (®)]

of Euclidean length 1 is called the tangential unit vector. The path v is called
regular iff v'(¢) # 0 for all t € I.

Example 6.1

(1) The curve v : [0,27] — R?, v(t) = (cost,sint) describes the unit circle
0U(0) = {z € R? | |z| = 1} in the mathematically positive sense (counter-
clockwise orientation). For every parameter value ¢ the curve is regular and

7' (t) = (—sint, cost)

is the tangential unit vector.
(2) Let 7: [0,27] — R? be defined by ¥(t) = (cost, —sint). Again 4 describes
the unit circle, but in the mathematically negative sense (clockwise orien-

tation). Although ~(I) = #(I), the regular curve 7 is considered as a curve
different from 7.

(3) Let ¥ = [0,v/27] — R? be defined by 4(t) = (cost?,sin#?). Obviously 4
describes the unit circle, 5([0, v27]) = 0 U;(0). However, 4'(0) = 0 implying
that the curve is not regular at the parameter value ¢ = 0. In particular the
curve 7 is considered as a curve different from the curve +.

Definition A polygonal line in R™ is a (continuous) path v : I = [a,b] — R"
together with a partition P : a = tg < t; < -+ < t, = b of [a,b] such that
7 |it;_1,t;) is affine linear. Then the arc length s(y) of 7 is defined by

s(7) = Z Y (t;) — y(tj-1)]-
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Note that the real number s(y) does not change when considering a refinement
P’ of P.

Definition Let v : I — R* be a path and let P : t; < t; < ... < t,, with
t; € I, 0 <j <m, be a partition of I. Then let

s(P,y) = Z Y (t;) — Y(tj-1)]

denote the arc length of the polygonal line interpolating y(to),...,7(tm). The
path ~ is called rectifiable iff the set {s(P,7) | P a partition of I} is bounded. In
this case

() = sUp s(P,7)
is called the arc length of ~.

Example 6.2 Let v : I = [a,b] — R" be Lipschitz continuous, i.e., there exists
an L > 0 such that

y(t) —y()| < Lt —=¢| forall ¢t €l.

Then 7 is rectifiable and s(y) < L(b—a). To prove this result consider an arbitrary
partition P : ty < ... < t,, in [a,b]. Then

Z J1|<LZ|t_tJ 1| = L(b—a).
Theorem 6.3 Let v : [a,b] = R™ be a continuously differentiable path. Then -y

s rectifiable and
b
- [

Corollary 6.4 Let the path v : [a,b] — R? be defined as the graph of a conti-
nuously differentiable function f : [a,b] — R, i.e.,

v(t) = (. f(t), t€lab]-

Then v is rectifiable and

- /b I+ 0 d.



Example 6.5 Parameterize the unit circle by v : [0,27] — R, v(t) =
(cost,sint), cf. Example 6.1 (1), and consider the arc 7| ,). Then by Theorem

6.3
5( [O,w]):/ |(—sint,cost)|dt:/ 1dt = z.
0 0

Hence, for every x € (0,2x], the arc length of the arc parameterized by (t),t €
[0, z], equals x. This result explains the name radian measure (Bogenmaf) of the
’angle’ z. In particular, s() = 27 is the arc length of the unit circle.

Proof of Theorem 6.3
Claim 1 7 is rectifiable and s(7y) < f |y (t)|dt.

Proof For an arbitrary partition P:a =1ty < ... < t, < b of [a,b]
s(P,y) = Z [y (t5) = v(t-1)]

= Z\/' (t)dt|

< 3 [ wow
- / 1 (6t
where we used the ’triangle inequality’ | fé{l )| < f (t)|dt. This inequa-

lity may be proved by using the triangle inequality on R" and by approximating
[ +'(t)dt by Ri )
by y Riemann sums. (m

Claim 2 For every € > 0 there exists a partition P of [a, b] such that

[ o= s <

Proof The map t — |7/(¢)| is uniformly continuous on [a,b]. Hence for every
e > 0 we find a 0 > 0 such that for every partition P:a =ty <t;1 < ... <t, =b
satisfying max;(t; — t;_1) < ¢ the inequality

<eg

(t)|dt — Z Y (t3)1(t; — 1)




holds. Moreover, there exists a d; > 0 such that

IY'(t) =+ (1) <e forall t,7€]a,b], |t—T|<di.

Hence
t;) — y(t;_ 1 t
vty - M=)l T 7 () - ) ar
t] - tJ—l t] - tJ—l tj_1
1 tj ! !
< PO Y'(t;) —~'(7)|dr
VAR N 7R
< €

provided that 6 < §;. This estimate allows to replace ) |Y'(¢;)| (t; — tj_1) by
> 1v(t5) — v(tj-1)l, since

Z Y ()] (= tj-1) — Z Iv(t5) — V(tj—1)|‘
< ; Y (t;) — V(tij,:zj(tf_l) (t; —tj-1)
< eZ(tj —t; 1) =e(b—a).

Summarizing the previous inequalities we get that

[ bl s, w\ <c(l+b-a)

using the triangle inequality. (m) m

In Example 6.1 we introduced three curves «,% and 4 with the same image (or
trace), i.e., ([0, 27]) = F([0, 27]) = 4([0, v'27]) = OU;(0), which nevertheless had
to be considered as three different curves. On the other hand,

§:[0,7] = R?, 6(t) = (cos2t,sin 2t),

defines a regular curve with 6([0, 7]) = ([0, 27]) and with the same orientation.
Since § and v are related to each other by the invertible, continuously differen-
tiable function ¢ +— 2¢, the curves v and ¢ will be identified.

Definition 6.6 Let ¢ : [a, 8] — [a, b] be an invertible continuously differentiable
function such that o' : [a,b] — [«, ] is continuously differentiable as well.
Then ¢ is called a C'-diffeomorphism of parameters. Furthermore, ¢ is called an
orientation-preserving parameter transformation iff ¢ is strictly increasing; ¢ is
called orientation reversing iff ¢ is strictly decreasing.
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Theorem 6.7 Let v : [a,b] — R" be a continuously differentiable path, let ¢
[a, B] = [a,b] be a C*-diffeomorphism of parameters and let § = yo ¢ : [a, 8] —
R".

(1) If v is regular, then § is reqular as well. In this case the tangential vectors
8'(1) and +'(p(7)) are parallel at each T € |«, B]. These tangential vectors
point into the same (opposite) direction iff ¢ is an orientation-preserving (
-reversing) parameter transformation.

(2) s(y) = s(d), i.e., the arc length is invariant with respect to C'-diffeo-
morphisms of parameters.

Proof

(1) Since ¢ and ¢! are continuously differentiable on [, 8] and [a, b], resp., and
since ¢ '(¢(7)) = 7 implying 1 = (¢~')" - ¢’ we conclude that either ¢’ > 0
(orientation-preserving) or ¢’ < 0 (orientation-reversing) on [a, §]. Then the
identity

proves (1).
(2) Using the Change of Variable Formula we get when ¢’ > 0

5(6) = jf 5(r |dT--j/ Y (@) ¢ dr
=/|7 )| &' dT—/Iv )| dt.

When ¢' < 0 we proceed analogously. [ ]

Among the set of all orientation-preserving parameter transformations for a given
regular C'-path 7 : [a,b] — R™ we choose that one 'related to arc length’. Let

=/ @] dt, t € [ab].

Since ¥'(t) = |¥'(¢)| > 0, ¥(a) = 0 and

— [l de =5,

the inverse ¢ =9 ~! is a C'-function from [0, s(7)] to [a, b]. Then

§=70¢p:[0,s(y)] = R"



is another parametrization of the path ~ such that

_ (o) _ @)
Pe(r) @)

Hence ¢ is a new parametrization of v with the same orientation satisfying

§'(1) = 7' (e(7)) - ¢'(7)

5(8j0,77) = /0 |6'(7)|d7 =7 forall 7 €]0,s(y)]

Therefore ¢ is called the parametrization of the path v with respect to arc length.
We note that working with paths parameterized with respect to arc length may
simplify computations and formulae a lot.

Next we try to integrate vector fields, i.e. mappings F' from R” to R", along paths
v in R™ such that only the tangential part of F' along v will yield a contribution
to that ’line integral’. This kind of integral is important e.g. in physics since the
translation of a particle along v in a force field F' requires or yields energy iff
F(y(t)) - +'(t) # 0. However, line integrals are also important in analysis when
looking for ’antiderivatives’ of vector fields.

Definition 6.8 (1) Let U C R" be open. Then a mapping f : U — R" is called
a vector field.

(2) Let f: U — R be a continuous vector field and let y : [a,b] — U be a
rectifiable path. Given a partition P : a =ty < t; < ... < t,, = b of [a, b] and
'intermediate points’ (; on the arc y([tj_1,%,]), 1 < j < m,ie., { = v(7;)
with T; € [tjfl,tj],

m

R(P, f,7) = > F(&G) - (v(t;) = 7(t;-))

7j=1
is called a Riemann sum of f along 7 (with intermediate points (;).

Theorem 6.9 Let f : U — R be a continuous vector field and let 7y : [a,b] —
U be a rectifiable path. Then there exists a real number I(f,~y) such that the
Riemann sums R(P, f,7) converge to I(f,~) when the mesh size of the partition
P converges to 0.
To be more precise, for every € > 0 there exists § > 0 such that
A(P) = 1I§n]a§)§n |tj - tj—ll )
implies



For I(f,7), the line integral of f along vy, we will write

Lf(x) dx

(also fv(fldfyl + .ot fodyn) or fv(fldacl + oot fudzy)).
Proof Given partitions P and P’ of [a,b] with A(P), A(P') < § define the refi-
nement P" = P U P' = {t;} satisfying again A(P") < 4. Then

[R(P, f,7) — R(P', f,7)| = (F(&) = £(6)) - (v(t) = v(t5-1))

< Z|f G) = FEHI () = ~(t-1)

where (; and C’ are intermediate points with respect to the partitions P and P,
resp. However, (; and ¢} will not necessarlly lie on the arc y([t;_1,t;]) related to
P". Nevertheless, there are parameters 7;, 7; € [a, b] such that

G =), ¢G=n(r) and |7 —7j] <26

Now let € > 0 be given. Since f oy = [a,b] — R" is uniformly continuous,
there exists > 0 such that

|[foy(r) — fory(T) < % forall 7,7 €[a,b], |1 —7'| <26.

Hence

[R(P, f,7) = R(P', f,7)| < = Z ti)| <e (6.1)

provided that A(P) < ¢ and A(P') < 4.

This ’Cauchy property’ will yield the existence of the number I(f,v) =
f7 f(z) - dz as follows. Consider a sequence of partitions (P,), of [a, b] such that
A(P,) — 0 asn — oo. By (6.1) the sequence (R(P,, f,7)). is a Cauchy sequence;
consequently there exists I(f,y) € R such that

R(P,, f,v) = I(f,7) as n — oc.

Actually, I(f,~) is independent of the sequence of partitions. Given partitions
(P,), (P!) with A(P,) — 0,A(P!) — 0 the sequence of partitions (PY) defined
by Py, P|, P», P;, P3, P;, ... again yields a convergent sequence of Riemann sums
(R(P!, f,7))- Its unique limit equals the limits of the convergent subsequences
(R(Py, f,7)) and (R(P., f,7)). This argument completes the proof. n



Theorem 6.10 Let U C R" be open, let 7 : [a,b] — U be a continuously diffe-
rentiable path and let f : U — R"™ be a continuous vector field. Then

[sw-a= | " Flate)) - (e

Proof Formally we argue that

To be more precise, let P = {t;} be a partition of [a,b] and choose the interme-
diate points (; = y(¢;). Then

E?s

R(P, f,7) = (v(#)) - (v(t5) = 7 (t-1))

<.
Il
—

Il
NE

FOv(t3) -7 ()t = t5-1)

<.
Il

NN
~

+3°10t)) / " (s) — (1)) ds

7j=1 Jj—

= Ry(P,f,v)+ Ra(P, f,7).

Here R(P, f,7) converges to [ f(z)-dz and Ri(P, f,7) converges to f: f(v(@)) -
v'(t) dt (being a Riemann sum of that integral) as the mesh size of P goes to 0.
Furthermore, the boundedness of |f o 7| on [a,b] by a constant M > 0 and the
uniform continuity of 7' on [a, b], i.e., |7 (s) — ¥ (8)| < ¢ for all s,s" € [a,b], |s —
s'| < 6, yield the estimate

IRy (P, f,7) Z (t; —tji)e =eM(b—a)

provided that the mesh size of P is less than 6. Hence Ry (P, f,v) — 0 as A(P) —
0 completing the proof. [ ]

Corollary 6.11 Let U C R" be open, let f,g : U — R* be continuous vector
fields and let 7y : [a,b] — U be rectifiable.



L(f+g)($)'d$ = [yf(x)-dx%—[yg(x)-dx
/(cf)(x)-da: = c[rf(:v)-d:v forall ceR

v
(2) Let vy~ denote the path obtained from -y by reversing the orientation, i.e.,
v :a,b] = U, v (t) =v(a+b—1).

L_f(m)-dxz—lf(x)-dx.

(3) Let d:[b,c] = U denote another rectifiable path such that v(b) = 6(b), and
let v ® 0 denote the concatenated path connecting v(a) via y(b) =6
d(c). Then

Then

L®6f(x)-dx:Af(ac)-dac-l—/éf(x)-dx.

[ $@)-ds < s

where || fllooy = sup{[f(v(t))| | £ € [a, 0]}

Proof The assertions (1) - (3) are trivial. To prove (4) consider a partition P of
[a,b]. Then by the triangle inequality and the Cauchy-Schwarz inequality

[R(P, f,7)| = FOr(t5) - (v(t) = v(t5-1))

NE

1

<.
Il

LF(v@)] () = y(Ei-1))]

M

1

Il

J

< Al lloory Z () = v (tj-1)]

proving that |R(P, f,7)| < ||flleo,y s(7).- Now Theorem 6.9 completes the proof.
]

Theorem 6.12 Let U C R™ be open, let v : [a,b] — U be a rectifiable path and let
f U —= R* be a continuous vector field. Furthermore, consider an orientation-
preserving parameter transformation ¢ : (o, 5] — [a,b] and define § = o .

Then
[ f(@)-do = /5 f(@) - da,
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i.e., the value of the line integral f7 f(z) - dzx does not depend on the parametri-
zation of the path.

Proof For simplicity we only consider the case of C*-paths . Then by Theorem
6.10 and the Change of Variable Formula (with ¢ = ¢(s))

[1@-a = 3 [
z;1 ;
= > [ (rorow)(s) llpts))es) s

2p()e'(s)
_ /6f(:c) - da.

=(viop) (s)=0;(s)
When 7 is only rectifiable, but not C!, a straightforward argument will use the
approximants R(P, f,7v) and R(P, f,6) of f7 f(z) - dz and of [; f(x) - dz resp.
with partitions P of [a, ] and corresponding partitions P of [e, A]. u

Although by Theorem 6.12 the value of the line integral [ f(z) - dz does not
change when working with a different parametrization of tLe path v with the
same orientation, the integral will generally change when considering two different
paths connecting the same points in U. However, under certain conditions of
physical and mathematical importance, the value of the line integral will depend
only on the endpoints of the path but not on the actual shape of the path between
the endpoints.

Definition 6.13 An open set U C R" is called a domain ff it is pathwise connec-
ted, i.e., for any two points x,y € U there ezists a path v : [a,b] — U with
endpoints y(a) = z,v(b) = y.

We note that any two points x,y in a domain U C R™ may be connected by a
polygonal line and even by a continuously differentiable path. The proof which
will be omitted is based on the compactness of v([a, b]), the uniform continuity
of v and on some approximation procedures.

Definition 6.14 Let U C R"” be open and let ¢ : U — R be differentiable. Then
the vector field
f:U—=R", f(z):=Ve()

is called a gradient field and ¢ is called a potential function of f.

Obviously, the potential function ¢ defining the gradient field f = V¢ is not
unique, since f = Vo = V(p+-c) for every constant ¢ € R. However, by Theorem
4.16 , any other potential function % of f on a domain U differs from ¢ only by
an additive constant ¢, since V(¢ — ¢) = 0.
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Theorem 6.15 Let U C R” be a domain and let f : U — R" be a gradient field
with a continuously differentiable potential function ¢ : U — R.

(1) For any two points xo, x1 € U and any (piecewise) continuously differentiable
path v in U connecting xy with x,

/ f(@) - dz = pla1) — (o).

Hence, the value of the line integral L f(z) - dz does not depend on vy itself,
but only on the endpoints of ~v: The line integral is independent of the path.

(2) If v is a closed and (piecewise) continuously differentiable path, i.e., the
endpoints of v coincide, then

[Yf(x)-dxzo.

Very often this result on a line integral along a closed path v is written as

¢, f(@)-dz=0.
Proof

(1) First let 7y : [a,b] — U be continuously differentiable. Then by Theorem 6.10
and the chain rule

/ f(2)-dz = / (Vo) (1)) - /(1)

If v is only a piecewise C'-function, the previous part may be applied to
every C'-part 7y |i;,_, 4,7 of 7, 1 < j < m. Then Corollary 6.11 (3) applied to
the concatenation

V=7 litota] B -+ - BV litm-1,tm]
finishes the proof.

(2) is an easy consequence of (1) since zg = ;. n

Theorem 6.15 (1) may be considered as a generalization of the Fundamental
Theorem of Calculus on R! to the multidimensional case. But in contrast to the
one-dimensional case in which every continuous function has an antiderivative,
not every vector field will have a potential. Furthermore, the question how to find
a potential of a given vector field arises.
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Theorem 6.16 Let U C R" be a domain and let f : U — R® be a continuous
vector field. If the line integral fvf(:c) - dx 1s independent of the path, then f is
a gradient field.

To be more precise, fit a € U and define ¢ : U — R by

:/zf(y)-dy = [ f(y)-dz

where v, is an arbitrary (piecewise) continuously differentiable path in U connec-
ting a with x. Then ¢ is continuously differentiable and

Vo=f wmn U

Proof First we note that ¢ is well-defined: Given two paths 7, and ., in U
connecting a with z, the path independence of line integrals of f yields

/%f(y)-dy=/%f(y) dy

To prove the differentiability of ¢ let x € U and choose € > 0 such that the ball
U.(z) is contained in U. Then for all h € R* with |h| < ¢ the straight line [z, x+h]
which may be parameterized by o(t) = = + th, t € [0,1], lies in U. Furthermore,
let v, be a path in U from a to z and let v, @ o be the concatenated path from
a to z + h via z. Then by Theorem 6.10 and Corollary 6.11

o(@+h) — p(z) — f(z) - h
= [ tw-ay- /f “dy— f(z) - h

=/f ~dy — f(z)-h

- /(f(:v+th) F@)) < dt

0

inserting the parametrization of o. Hence

[o(z +h) — () = f(z) - bl < || sup |f(z+1th) — f(z)|

t€[0,1]

where the sup-term converges to 0 as h — 0 due to the continuity of f. This
convergence proves the differentiability of ¢ at x and that V(z) = f(x). n

Since the path independence of line integrals cannot be checked in practice, we
are looking for other necessary and sufficient criteria to prove that a given vector
field is a gradient field.
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Theorem 6.17 Let f : U — R"* be a C'-gradient field on an open set U C R".
Then for all1 < j,k <n
akfj = ajfk i U.

In particular, in the two-dimensional case Oy fo = Osf1. In the three-dimensional
case, the rotation or curl

02f3 — 03.f2
rotf(z):= | Osf1 — 01 f3 | (x) =0.
O fa — 021

Proof Since f is a C'-vector field, its potential ¢ is of class C?. Hence by Schwarz’
theorem

Okt = 3k(8j90) = 8j(ak§0) = 0; [
[

Definition 6.18 A domain U C R” is called star-shaped iff there exists an
m € U such that every segment

[m,z] CU for every z € U.

Note that every conver domain U, i.e., [z,y] C U for every z,y € U, is star-
shaped (with respect to every m € U), but that a star-shaped domain is not
necessarily convex.

Theorem 6.19 Let U C R™ be star-shaped domain. A C*-vectorfield f : U — R"
15 a gradient field iff

O0ife =0kf; forall 1<jk<n.

Proof Without loss of generality assume that the ‘center’ m in the definition of
the starshapedness equals 0. Then, using 0,(t) =tz, 0 <t <1, x € U, define

o) = /%f(y)-dy=/01f(tx)-xdt
- é:xi/olfi(ml,...,mn)dt.

Since f € C!, we may differentiate ¢ with respect to z;, and get
1 n 1
Ap(z) = / fe(tz) dt+> " z; / O f(tz) t dt
0 i1 0

where by assumption 0 f; = 0; fx. Obviously %(tfk(tx)) = fr(tx) + tx - V fp(tx),
and consequently

Do) = / % (tu(t)) dt = fela) 0.
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Now the theorem is proved. [ ]

The assumption in Theorem 6.19 that the domain U is star-shaped is not neces-
sary and by far too strong. Actually it suffices to assume that U has 'no holes’.
In that case the integral theorems of vector analysis, see Green’s theorem (n = 2)
and Stokes’ Theorem (n = 3) below prove that the ’integrability conditions’
Ojfx = O fj, 1 < j,k < n, imply the path independence of line integrals of f and
consequently the existence of a potential function of f.
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