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Chapter I

Number Basics

1 The Real Numbers

What are the real numbers? Depending on your point of view this can be a difficult
question. In the following, we describe the set R of real numbers by giving rules which
allow us to ‘calculate’ with these numbers. This set of rules (or axioms) form the axiom
system of the real numbers.

This system consists of the following:

• Field axioms

• Ordering axioms

• Completeness axiom

All statements about the real numbers can be derived exclusively from these axioms.
We begin with the field axioms.

1.1. The Field Axioms.
There are two operations on the set R , namely addition ‘+’ and multiplication ‘·’:

Addition: R× R→ R
(x, y) 7→ x+ y

Multiplication: R× R→ R
(x, y) 7→ x · y

These satisfy the following field axioms:

1
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Axioms of Addition

(A1) Law of Commutativity: for all x, y ∈ R, x+ y = y + x.

(A2) Law of Associativity: for all x, y, z ∈ R, (x+ y) + z = x+ (y + z).

(A3) Existence of a Neutral Element: There exists 0 ∈ R such that x + 0 = x for all
x ∈ R.

(A4) Existence of an Inverse Element: For every x ∈ R there exists a −x ∈ R such
that x+ (−x) = 0.

Axioms of Multiplication

(M1) Law of Commutativity: for all x, y ∈ R, x · y = y · x.

(M2) Law of Associativity: for all x, y, z ∈ R, (x · y) · z = x · (y · z).

(M3) Existence of a Neutral Element: There exists a 1 ∈ R, 1 6= 0 such that x · 1 = x
for all x ∈ R.

(M4) Existence of an Inverse Element: for every x ∈ R with x 6= 0, there exists an
x−1 ∈ R such that x · (x−1) = 1.

The law of distributivity shows how addition and multiplication interact.

(D) Law of Distributivity: for all x, y, z ∈ R, x · (y + z) = (x · y) + (x · z)

A set K of elements a, b, . . ., together with the binary operations a + b and a · b
which satisfy the above axioms, is called a field. In the lecture linear algebra, fields
and their axioms will be treated in greater detail. At this point, we only remark that
the elements 0 and 1 are uniquely determined and that the statement x · y = 0 implies
that at least one of x and y is zero.

We introduce the following simplifying notations

xy := x · y, x

y
:= x · y−1, x− y := x+ (−y), x2 := x · x, 2x := x+ x

1.2. The Ordering Axioms.
In R, certain numbers have the distinguished property of being positive (written x > 0)
such that we have:

(O1) For every x ∈ R, exactly one of the following relations is true: x = 0, x > 0,
−x > 0
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(O2) x > 0, y > 0⇒ x+ y > 0

(O3) If x > 0, y > 0, it follows that x · y > 0

The second axiom states compatibility with addition, the third one compatibility
with multiplication.

The following definition enables us to compare any two elements of R:

1.3 Definition. Let x, y ∈ R. We define

x > y :⇔ x− y > 0

x ≥ y :⇔ x− y > 0 or x− y = 0.

An element x ∈ R with x > 0 is called positive (positiv).

For x > y and x ≥ y one can also write y < x respectively y ≤ x. If x < 0, then x
is called negative (negativ).

1.4. Calculation rules. Let x, y, z, u, v ∈ R. Then the following statements hold:
a) Exactly one of the following relations holds: x = y, x < y or x > y (Law of
Trichotomy)
b) x < y and y < z ⇒ x < z, (Transitivity)
c) x < y and u ≤ v implies x+ u < y + v (Monotonicity of Addition)
d) x < y ⇒ −x > −y
e) x < y, u > 0⇒ xu < yu, (Monotonicity of Multiplication)
f) x 6= 0⇒ x2 > 0, particularly 1 > 0
g) 0 < x < y ⇒ 0 < 1

y
< 1

x

h) x < y ⇒ x < x+y
2
< y

Proof. a) Follows from Definition 1.3 and Ordering Axiom (O1).
b) By Definiton 1.3, y − x > 0 and z − y > 0. Ordering Axiom (O2) implies
(y − x) + (z − y)︸ ︷︷ ︸

=z−x

> 0 ⇒ z > x⇒ x < z

c) – e) Exercises
f) Let x > 0, then x · x = x2 > 0 by (O2). If x < 0, then d) implies that −x > 0 and
from there (−x)(−x) = (−x)2 > 0 by (O3). That (−x)(−x) = x2 follows from results
in the solution of Tutorial 1. Namely, we get (−x)(−x) = (−1)x · (−1)x = (−1)2x2.
We get also (−1)(−1) = −(1 · (−1)) = −(−1) = 1. So (−x)(−x) = x2.
g) x−1 = x︸︷︷︸

>0

· (x−1)2︸ ︷︷ ︸
>0

> 0 , analogously y−1 > 0. Therefore x−1 · y−1 > 0. Given this,

together with 0 < x < y, it holds that:

y−1 = x · (x−1y−1) < y(x−1y−1) = x−1
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h) Exercise
�

The field- and ordering axioms imply that in addition to 0, 1, other numbers exist in
R. In fact, adding 0 resp. 1 to both sides of the inequality 0 < 1, we get 0 + 0 = 0 <
1 + 0 = 1, 1 < 1 + 1 = 2, therefore 2 6= 0, 2 6= 1.

1.5 Definition. (Absolute Value). Let x ∈ R. We define the absolute value (Absolut-
betrag) of x as

|x| :=
{

x, x ≥ 0,
−x, x < 0.

1.6 Remark. For the absolute value, we have the following rules:

a) |x| ≥ 0 ∀ x ∈ R and |x| = 0⇔ x = 0.

b) | − x| = |x|, x ∈ R

c)
∣∣|x|∣∣ = |x|, x ∈ R

d) |x · y| = |x| · |y|, x, y ∈ R

e) |x
y
| = |x|

|y| , x ∈ R, y 6= 0

f) |x+ y| ≤ |x|+ |y|, x, y ∈ R (Triangle Inequality)

g) ||x| − |y|| ≤ |x− y|, x, y ∈ R (Reverse Triangle Inequality)

Proof. a) b) c) d) e) g) as exercises. For f): Let x, y ∈ R. Then x ≤ |x|, y ≤ |y|
and also −x ≤ |x| and −y ≤ |y|. The monotonicity of addition 1.4. c) gives that
−x−y ≤ |x|+|y| and also that x+y ≤ |x|+|y|. Therefore, it holds that |x+y| ≤ |x|+|y|.

�

We now consider the positive integers as a subset of R. To this end, we have the
following definition:

1.7 Definition. Let M ⊂ R. Then M is called inductive (induktiv), if the following
hold:

a) 0 ∈M

b) x ∈M ⇒ x+ 1 ∈M .
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Obviously, the set R of real numbers is inductive. If we define M := {x ∈ R : x ≥
a}, then M is inductive if we have a ≤ 0.

1.8. Theorem and Definition. There exists a smallest inductive subset of R; this is
called the set of nonnegative integers and is denoted by N0.

Proof. Let M ⊂ R be inductive. Set

N0 :=
⋂
M⊂R

M inductive

M ;

in other words, N0 is the intersection of all inductive subsets of R. Therefore, it holds
that 0 ∈ N0, since 0 ∈M for all inductive sets M ⊂ R.

Additionally, let x ∈ N0 ⇒ x ∈M for all inductive subsets M ⊂ R
⇒ x+ 1 ∈M for all inductive subsets M ⊂ R
⇒ x+ 1 ∈ N0.

Therefore, N0 is inductive and since N0 ⊂ M for all inductive sets M ⊂ R, then N0 is
the smallest inductive subset of R.

�

1.9 Corollary. (Induction). Let N ⊂ N0 be a set with the following properties:

a) 0 ∈ N

b) x ∈ N ⇒ x+ 1 ∈ N

Then N = N0.

The proof is obvious since N0 is the smallest inductive subset of R.

This corollary enables us to consider the method of proof by induction.

1.10 Theorem. For every n ∈ N0 let the proposition A(n) be defined. If it holds that:

a) A(0) is true (Induction Start).

b) If A(n) is true, then A(n+ 1) is also true (Induction Step).

Then A(n) holds for all n ∈ N0.

Proof. Set N := {n ∈ N0 : A(n) is true } ⇒ N ⊂ N0 inductive
1.9⇒ N = N0.

The assumption in b) that A(n) is true is called the Induction Hypothesis.
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1.11 Examples.

a) The Bernoulli Inequality:
Let x > −1 and n ∈ N0. Then

(1 + x)n ≥ 1 + nx.

The proof is left as an exercise.

b) Geometric Series: Let q ∈ R with q 6= 1 and n ∈ N0. Then

q0 + q1 + q2 · · ·+ qn =
1− qn+1

1− q
.

Proof. Induction Start: A(0) is true since q0 = 1 = 1−q
1−q = 1.

Induction Step (IS):
By assumption, A(n) is true. Then:

q0 + q1 + ·+ qn︸ ︷︷ ︸+qn+1 =
1− qn+1

1− q
+ qn+1 =

1− qn+1 + (1− q)qn+1

1− q

=
1− qn+2

1− q

Therefore A(n) holds for all n ∈ N0.

1.12 Theorem. (Properties of N0). The following statements hold:

a) 0, 1 ∈ N0

b) n ∈ N0 ⇒ n = 0 or n ≥ 1

c) n,m ∈ N0 ⇒ n+m,n ·m ∈ N0

d) n,m ∈ N0, n ≥ m⇒ n−m ∈ N0

e) Let n ∈ N0. There does not exist an m ∈ N0 such that n < m < n+ 1.

f) Every nonempty set M of nonnegative integers contains a smallest element, i.e.
let M 6= ∅,M ⊂ N0 ⇒ ∃ m ∈M with m ≤ n ∀ n ∈M .

Proof. a) 0 ∈ N0 by definition and N0 is inductive. Therefore 0 + 1 = 1 ∈ N0.
b) Set B := {0} ∪ {n ∈ N0 : n− 1 ∈ N0 and n− 1 ≥ 0} ⊂ N0. Then B is inductive. In
fact, 0 ∈ B. Additionally, let n ∈ B. We need to show that n+ 1 ∈ B. If n = 0, then
it follows that n+1 = 1 ∈ B. If n 6= 0, then 0 ≤ n−1⇒ 0 < 1 ≤ n = (n+1)−1 ∈ N0

and therefore n+ 1 ∈ B. ⇒ B = N0 and therefore, the claim.
c)d)e)f) as exercises

�
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1.13. A Variant of the Induction Principle.
If for some n0 ∈ N0:

a) A(n0) is true.

b) A(n0), A(n0 + 1), . . . A(n) being true ⇒ A(n+ 1) is also true

Then A(n) is true for all n ≥ n0.

Thus one can show, for example, that 2n > n2 if n ≥ 5.

1.14. Examples of Induction. We now consider recursive definitions:

a) Powers: For x ∈ R set

x0 := 1
xn+1 := x · xn, n ∈ N0

b) Factorials:
0! := 1

(n+ 1)! := (n+ 1) · n!, n ∈ N0

c) Finite Series and Products:
Let aj ∈ R for j ∈ N0. We set

0∑
j=0

aj := a0,
n+1∑
j=0

aj := an+1 +
n∑
j=0

aj, n ∈ N0

0∏
j=0

aj := a0,
n+1∏
j=0

aj := an+1 ·
n∏
j=0

aj, n ∈ N0.

Analogously, we define

n∑
j=l

aj and
n∏
j=l

aj, n ≥ l

d) Binomial coefficients:
For a ∈ R, n ∈ N0, set(

a

0

)
:= 1,

(
a

n+ 1

)
:=

a− n
n+ 1

(
a

n

)
The following statements can be proved by induction:
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i) Let a ∈ R and n,m ∈ N0 ⇒ an · am = an+m

ii) For n, k ∈ N0 with 0 ≤ k ≤ n, we have
(
n
k

)
= n!

k!(n−k)!

iii) For n, k ∈ N0, we have
(
n
k

)
=

{ ( n
n−k

)
falls k ≤ n

0 falls k > n

iv) For n, k ∈ N0, we have
(
n
k

)
+
(
n
k+1

)
=
(
n+1
k+1

)
”Pascal’s Triangle”

1.15 Theorem. (Binomial Theorem). Let a, b ∈ R and n ∈ N0. Then

(a+ b)n =
n∑
j=0

(
n

j

)
ajbn−j.

Proof. Induction Start: For n = 0, it holds that:

1 = (a+ b)0 =
0∑
j=0

(
0

j

)
a0b0 = 1.

Induction Step: Let the statement from the theorem hold for some n ∈ N0: Then

(a+ b)n+1 = (a+ b)(a+ b)n

= (a+ b)
n∑
j=0

(
n

j

)
ajbn−j

=
n∑
j=0

(
n

j

)
aj+1bn−j +

n∑
j=0

(
n

j

)
ajbn−j+1

=
n+1∑
j=1

(
n

j − 1

)
ajbn−(j−1) +

n∑
j=0

(
n

j

)
ajbn−j+1

=
n∑
j=1

[

(
n

j − 1

)
+

(
n

j

)
]︸ ︷︷ ︸

1.14d)iv)
= (n+1

j )

ajbn−j+1 +

(
n

0

)
︸︷︷︸

=1

a0bn+1 +

(
n

n

)
︸︷︷︸

=1

an+1b0

=
n+1∑
j=0

(
n+ 1

j

)
ajbn−j+1,

i.e. the statement from the theorem also holds for n+ 1.
�
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1.16 Definition. a) A set M ⊂ R is said to be bounded from above (nach oben
beschränkt), if there exists an s ∈ R such that

m ≤ s for all m ∈M.

If this is the case, s is called an upper bound (obere Schranke) of M .
b) An upper bound s0 is called the least upper bound (kleinste obere Schranke) or the
supremum of M ⊂ R, if for every upper bound s of M ,

s0 ≤ s.

Remark. a) If s0, s
′
0 are both least upper bounds of M , it follows that s0 ≤ s′0, s

′
0 ≤ s0,

therefore s0 = s′0. Therefore the supremum is uniquely (eindeutig) determined.
b) The following axiom states that there exists a supremum in any nonempty upper
bounded set of real numbers.

1.17. Completeness Axiom. Let M ⊂ R be a nonempty set with an upper bound.
Then M has a supremum s0. We define supM := s0.

Now we have axiomatically introduced R as a set that is equipped with addition + ,
multiplication · , and order < , and that satisfies the field-, order- and completeness
axioms.

1.18 Definition. Let ∅ 6= M ⊂ R and s0 = supM . If s0 ∈ M , then s0 is called the
maximum of M . We define maxM := s0.

1.19 Examples. a) Let M := {x ∈ R, x < 1}. Then supM = 1 =: s0, although M
has no maximum. s0 = 1 is clearly an upper bound of M . Assume there exists an

upper bound s < 1 of M .
1.6.h⇒ s < s+1

2
< 1 this contradicts the assumption that s is

an upper bound of M . Additionally, 1 6∈M , therefore s0 = 1 is not a maximum.
b) Let a ≥ 0 and M := {x ∈ R : x2 ≤ a}. Then M is bounded from above, for
example by 1 + a

2
. Furthermore, M is obviously nonempty, as 0 ∈ M . Therefore, the

completeness axiom implies that s0 := supM exists. Moreover, we have

s2
0 = a.

Proof.

i) If a = 0, then we have s0 = 0. In the following, we therefore assume that a > 0.
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ii) We first prove s2
0 ≥ a: We assume the statement is false. Then a − s2

0 > 0,

therefore ε :=
a−s20
2s0+1

> 0.

Furthermore we have ε < 1, because ε ≥ 1 would imply that

a− s2
0 ≥ 2s0 + 1⇔ a ≥ s2

0 + 2s0 + 1 = (s0 + 1)2.

This would imply s0 + 1 ∈ M and hence s0 + 1 ≤ supM = s0. Contradiction!
Therefore

(s0 + ε)2 = s2
0 + 2s0ε+ ε2 < s2

0 + (2s0 + 1)ε = s2
0 + a− s2

0 = a.

Hence s0 + ε ∈ M and consequently s0 + ε ≤ s0, contradicting the definition of
s0. Therefore, s2

0 ≥ a.

iii) Now we prove s2
0 ≤ a: Assume that the statement is false. Then, s2

0 − a > 0.

Define δ :=
s20−a
2s0

> 0. Then s := s0 − δ =
2s20−s20+a

2s0
=

s20+a

2s0
> 0 and s2 =

s2
0−2s0δ+δ2 = s2

0−s2
0 +a+δ2 = a+δ2 > a. Therefore s2 > a ≥ x2 for all x ∈M

and s > x for all x ∈M . Hence s2 < s2
0 is an upper bound of M in contradiction

to the minimality of s0.

Statements ii) and iii) imply s2
0 = a.

c) Corollary. For every real number a > 0, there exists exactly one real number w > 0
with w2 = a. The number w is called the square root (Wurzel) of a and is denoted by
w =

√
a.

1.20 Definition. a) A set M ⊂ R is said to be bounded from below (nach unten
beschränkt), if there exists an r ∈ R such that

r ≤ m for all m ∈M.

In this case, r is called a lower bound (untere Schranke) of M .
b) A lower bound r0 is called the greatest lower bound (größte untere Schranke) or the
infimum, if for all lower bounds r of M ,

r ≤ r0.

We define infM := r0.
c) If r0 ∈M , then r0 is called the minimum of M , and we define minM := r0.
d) If M ⊂ R is bounded from above and below, then M is called bounded (beschränkt).
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1.21 Lemma. Let M ⊂ R and −M := {−m : m ∈M}. Then the following statements
hold:

a) M is bounded from below ⇔ −M is bounded from above.

b) Every nonempty set M that is bounded from below has an infimum. The infimum
is uniquely determined.

c) M 6= ∅ is bounded from below ⇒ infM = − sup(−M).

Proof. Exercise

1.22 Theorem. (Characterization Theorem for Suprema). Let ∅ 6= M ⊂ R be
an upper bounded set and s0 ∈ R. Then:

supM = s0 ⇔ For all m ∈M we have m ≤ s0, and moreover, to each ε > 0 there
exists an m1 ∈M such that m1 > s0 − ε.

Proof. ⇒: Let s0 = supM . Then m ≤ s0 for all m ∈ M . Assume there exists ε > 0
such that for all m1 ∈ M we have m1 ≤ s0 − ε. Then s := s0 − ε is an upper bound.
Contradiction!
⇐: Let s0 be an upper bound of M . Assume there exists s ∈ R such that s < s0 and
m ≤ s ∀ m ∈ M . Set ε := s0 − s > 0. Then s = s0 − ε and m ≤ s0 − ε ∀ m ∈ M .
Contradiction!

�

To conclude this section, we define the natural numbers N and the integers Z as

N := N0\{0} and Z := N0 ∪ {−n : n ∈ N}.

The set Q of rational numbers is then given as

Q := {p/q : p, q ∈ Z, q 6= 0};

Furthermore, we call the elements of R \Q irrational numbers .

1.23 Corollary. a) N0 is not bounded from above.

b) Archimedes’ Principle:
∀ a > 0, b ∈ R ∃ n ∈ N0 such that n · a > b.

c) ”Classical Method of Deduction” in Analysis:
If 0 ≤ a < 1

n
for all n ∈ N, then a = 0. (Recall N := N0 \ {0}.)
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Proof. a) Assume N0 is bounded from above. Then there exists an s0 = sup N0 by
the Completeness Axiom. The Characterization Theorem of sup (see Theorem 1.22)
with ε = 1 implies that there exists an n ∈ N0 with n > s0 − 1. ⇒ n + 1 > s0 in
contradiction to the definition of s0.
b) Assume n ·a ≤ b for all n ∈ N0. Then N0 is bounded from above by b

a
. Contradiction

to a)!
c) Assume a > 0. Then n · a < 1 for all n ∈ N0 in contradiction to b).

�
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2 The Complex Numbers

In this chapter we give an axiomatic introduction to the field of complex numbers and
begin with the following definition:

2.1 Definition. On R2 := {(a, b) : a, b ∈ R} we define addition and multiplication as
follows:

Addition ⊕ : R2 × R2 → R2 : (a, b)⊕ (c, d) := (a+ c, b+ d)
Multiplication � : R2 × R2 → R2 : (a, b)� (c, d) := (ac− bd, ad+ bc)

Then for x = (a, b), y = (c, d) and z = (e, f) ∈ R2, ⊕ and � fulfill the field axioms
from § 1, where

0⊕ = (0, 0) additive neutral element ⊕
1� = (1, 0) multiplicative neutral element �
−(a, b) = (−a,−b) additive inverse element ⊕
(a, b)−1 = ( a

a2+b2
, −b
a2+b2

) multiplicative inverse element �
if(a, b) 6= 0⊕ = (0, 0)

For the proof of this fact we refer to linear algebra. R2 equipped with ⊕ and � is
therefore a field, which we call the field of complex numbers, denoted by C.

For (a, 0) ∈ C we have

(a, 0)⊕ (b, 0) = (a+ b, 0),

(a, 0)� (b, 0) = (a · b, 0),

i.e. if one identifies a ∈ R with (a, 0) ∈ C, then R is a subfield of C.

2.2 Definition. We define i := (0, 1) ∈ C. The number i ∈ C is called the imaginary
unit (imaginäre Einheit).

Then by definition of �:

i2 = (0, 1)� (0, 1) = (−1, 0) = −1.

i.e. i is a solution to the equation x2 + 1 = 0.

2.3 Remark. The field C cannot be ordered, i.e. there cannot exist a relation ”<”,
such that in C the ordering axioms from Chapter 1 hold. For if it were the case that
such an ordering existed, then in the same way as for R we would be able to prove that
x2 > 0 for all x ∈ C s.t. x 6= 0. Thus we would get −1 = i2 > 0. But we can prove
that −1 < 0, so this is a contradiction.
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2.4 Remark. Let z = (a, b) ∈ C with a, b ∈ R. Then

(a, b) = (a, 0)︸ ︷︷ ︸
=a

⊕ (0, 1)︸ ︷︷ ︸
=i

� (b, 0)︸ ︷︷ ︸
=b

.

If we identify a with (a, 0) as above, then we get that

C 3 (a, b) = z = a+ i · b.

The real number a is called the real part (Realteil) of z = a + ib and is denoted by
Re(z) = a. The number b is called the imaginary part (Imaginärteil) of z = a+ ib. We
set Im(z) = b.

2.5 Definition. (Conjugation and Absolute Value).

a) Let a, b ∈ R and z = a+ ib ∈ C. The complex number

z := a− ib

is called the complex conjugate of z.

b) The absolute value |z| of z is defined as |z| :=
√
zz =

√
a2 + b2 ≥ 0.

For z ∈ R the definition coincides with that of Section 1.

2.6 Lemma. (Calculation Rules for Complex Numbers). For complex numbers z, w ∈
C, we have the following calculation rules:

a) Re(z + w) = Re(z) +Re(w), Im(z + w) = Im(z) + Im(w)

b) z + w = z + w, z · w = z · w

c) z · z = |z|2

d) z = 0⇔ |z| = 0⇔ Re(z) = 0 = Im(z)

e) |z| = |z|

f) |z + w| ≤ |z|+ |w|

Proof. Exercise



Chapter II

Convergence of Sequences and
Series

Many of the basic theorems about infinite sequences and series, that we will examine in
the following, are due to Augustin-Louis Cauchy (1789–1857), one of the greatest
french mathematicians of his time. Already as a twelve year old pupil, he stood out
because of his talent, why Lagrange said about him

Vous voyez ce petit jeune homme, eh bien! il nous remplacera tous tant
que nous sommes de géomètres.

and advised Cauchy’s father

Don’t let this child touch a mathematical book before his seventeenth year.
If you do not hurry up to give him a solid literary education, his inclination
will carry him away.

In 1816, Cauchy was appointed a position as professor at the Ecole Polytechnique
in Paris and his three textbooks Cours d‘Analyse, Résumé des leçons sur le calcul
infinitésimal, Leçons sur le calcul différentiel are said to have introduced the formal
rigour in modern analysis. The systematic way, in which the theory of infinite series is
developed in Cours d‘Analyse is still exemplary today.

The infinitely small quantities, that were used by Cauchy, were replaced by pre-
cise and clear expressions involving inequalities by Karl Weierstrass (1815–1897).
Thereby, a standardised choice of variable names proved very useful. ε is used as an
arbitrarily small positive number (probably derived from the french erreur), and δ is
the number that corresponds to ε.

From 1864 on, Weierstrass taught at the university of Berlin. In his lectures, he
treats the convergence of sequences and series and, more generally, the infinitesimal
calculus in ‘Weierstrassian rigour’ and thus became the father of ‘epsilonics’ which is
standard today in any lecture about analysis.

15
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1 Convergence of Sequences

We begin this chapter, which is very important for this analysis class and for the further
development of analysis, by some remarks on functions and their properties.

1.1. Introduction.

a) Let X, Y be two sets. A function or a mapping f : X → Y is a rule, which assigns
to every x ∈ X one unique element y ∈ Y . We write

f : X → Y, x 7→ f(x).

b) The set graph(f) := {(x, f(x)) : x ∈ X} ⊂ X × Y is called the graph of f .

c) Two functions f, g : X → Y are equal, if f(x) = g(x) for all x ∈ X.

d) The set Fun(X,Y ) is defined to be the set of all functions f : X → Y .

e) Let f : X → Y be a function. Then X is called the domain of f and f(X) is
called the range of f . Further we say:

f is called injective, if x1, x2 ∈ X, x1 6= x2 ⇒ f(x1) 6= f(x2)

f is called surjective, if f(X) = Y .

f is called bijective, if f is injective and surjective.

f) If Y ⊂ R (Y ⊂ C) holds, then f is called a real-valued (complex-valued) function.

Let M be a set. We call a mapping f : N→M , which assigns an element an of M
to each n ∈ N, a sequence in M . If we let an := f(n) for all n ∈ N, we write (an)n∈N.
If we have an ∈ R for all n ∈ N, then (an)n∈N is called a real sequence; analogously,
if we have an ∈ C, n ∈ N, then (an)n∈N is called a complex sequence. Occasionally
it is convenient to start a sequence with a0. In this case, the sequence is a mapping
N0 →M and we write (an)n∈N0

1.2 Definition. A complex sequence (an)n∈N0 converges to a ∈ C, if

(∀ ε > 0) (∃ N0 ∈ N) (∀ n ≥ N0) |a− an| < ε .

The number a is called the limit value or just limit of the sequence (an)n∈N and we
write

lim
n→∞

an = a or an
n→∞−→ a.

If there exists an a ∈ C with lim an = a, then (an)n∈N0 is called a convergent sequence,
otherwise a divergent sequence. If (an)n∈N0 converges to 0, then (an)n∈N0 is called a null
sequence.
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1.3 Remarks. a) The limit is uniquely determined, i.e.

an → a∗

an → a∗

}
⇒ a∗ = a∗

Proof. Let ε > 0 be arbitrarily chosen. Then n1
0, n

2
0 ∈ N0 exist, with:

|an − a∗| <
ε

2
∀ n ≥ n1

0

|an − a∗| <
ε

2
∀ n ≥ n2

0

Here a∗ − a∗ = a∗ − an + an − a∗ implies

0 ≤ |a∗ − a∗| ≤ |a∗ − an|+ |an − a∗| < ε ∀ n ≥ max{n1
0, n

2
0},

i.e. |a∗ − a∗| = 0 ⇔ a∗ = a∗ due to the classical conclusion method of Analysis
(Chapter I, 1.23).
b) If an is defined only for n ≥ N , then we denote (aN , aN+1, · · · ) as a sequence too,
and write (an)n≥N .

1.4 Examples.

a) For a ∈ C, the constant sequence (a, a, · · · ) converges to a.

b) The sequence ( 1
n
)n≥1 is a null sequence. We prove this as follows: Let ε > 0 be

arbitrary. By the Archimedean Property I 1.23 there exists n0 ∈ N0 with n0 · ε > 1.
Thus:

|0− 1

n
| ≤ 1

n0

< ε, ∀ n ≥ n0

c) The sequence ( n
n+1

)n∈N converges to 1.
Again choose ε > 0 arbitrarily. By the Archimedean Property I 1.23 there exists
n0 ∈ N0 with n0 · ε > 1. Thus:

|1− n

n+ 1
| = | 1

n+ 1
| < 1

n0

< ε, ∀ n ≥ n0.

d) Let an :=
n∑
j=1

1
j(j+1)

for n ≥ 1.

Since 1
j(j+1)

= 1
j
− 1

j+1
, it follows that an = 1− 1

n+1
; hence an → 1 for n→∞.

e) Let an = (−1)n. Then (an)n∈N0 diverges: Assume for the moment that (an)
converges to a ∈ C. Then there exists n0 ∈ N with |a− an| < 1

2
∀ n ≥ n0. Thus

2 = |an+1 − an| ≤ |an+1 − a|+ |a− an| <
1

2
+

1

2
= 1.

Here we get a contradiction, which means that (an)n∈N is divergent.
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1.5 Definition. A sequence (an)n≥1 ⊂ C is called bounded, if there exists a constant
M > 0 with

|an| ≤M ∀ n ∈ N.

1.6 Theorem. Every convergent sequence (an)n≥0 is bounded.

Proof. Let lim
n→∞

an = a ∈ C. By hypothesis, in particular for ε = 1 there exists n0 ≥ 1

with |a− an| < 1 for all n ≥ n0. Thus for n ≥ n0 we have:

|an| ≤ |an − a|+ |a| ≤ 1 + |a|.

Hence

|an| ≤ max {|a0|, |a1|, · · · |an0−1|, 1 + |a|}︸ ︷︷ ︸
finitely many

=: M ∀ n ∈ N0.

�

1.7 Examples. a) The sequence ((−1)n)n∈N is bounded, but not convergent.

b) For q ∈ C let an := qn. Then:

i) if |q| > 1, then (an) is not bounded, thus divergent.

ii) if |q| < 1, then (an) is a null sequence.

1.8 Lemma. (Calculation rules for convergent sequences). Let (an)n∈N0 and (bn)n∈N0

be two convergent sequences with lim
n→∞

an = a and lim
n→∞

bn = b. Then the following

statements hold:

a) (an + bn)
n→∞−→ a+ b

b) (an · bn)
n→∞−→ ab

c) If b 6= 0, then there exists n0 ∈ N0 with bn 6= 0 ∀ n ≥ n0 and an

bn

n→∞, n≥n0−→ a
b
.

Proof. a) Let ε > 0 be arbitrary. Then there exist n1, n2 ∈ N0 with

|a− an| <
ε

2
, ∀ n ≥ n1,

|b− bn| <
ε

2
, ∀ n ≥ n2.
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For n0 := max{n1, n2} holds:

|a+ b− (an + bn)| ≤ |a− an|︸ ︷︷ ︸
< ε

2

+ |b− bn|︸ ︷︷ ︸
< ε

2

< ε ∀ n ≥ n0,

thus the claim.
b) Exercise.
c) Exercise.

�
The following example illustrates the above calculation rules for convergent sequences.
For n ≥ 2, we let

an =
3n2 − 2n+ 1

−n2 + n
=

3− 2
n

+ 1
n2

−1 + 1
n

.

Now the above Lemma 1.8 implies that limn→∞an = −3.
An important approach to determine whether a given sequence converges is to

estimate its terms by the terms of a convergent sequence. For that, we have to assure
that convergence and order are compatible. This is the statement of the following
lemma.

1.9 Lemma. (Compatibility of convergence and order). Let (an)n∈N0 and (bn)n∈N0 be
two real and convergent sequences with lim an = a and lim bn = b. If a number n0 ∈ N
exists with an ≤ bn for all n ≥ n0, then a ≤ b holds.

Proof. Assume, that a > b. Then ε := a−b
2
> 0 and hence, by hypotheses, there exists

n0 ∈ N with

a− an ≤ |a− an| < ε ∀ n ≥ n0,

bn − b ≤ |b− bn| < ε ∀ n ≥ n0.

Thus

bn < b+ ε =
2b

2
+
a− b

2
=
a+ b

2
= a− ε < an ∀ n ≥ n0.

Contradiction!
�

1.10 Corollary. (Sandwich Theorem). Let (an)n, (bn)n and (cn)n be real sequences,
for which lim an = a and lim bn = a. Let also n0 ∈ N exist with

an ≤ cn ≤ bn, ∀ n ≥ n0.

Then lim
n→∞

cn = a.
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Proof. Exercise.

Criteria which imply the convergence of a sequence without explicit knowledge about
the limit are especially important. For this, we introduce the following notions.

1.11 Definition. A real sequence (an)n∈N is called
a) (monotone ) increasing, if an+1 ≥ an for all n ∈ N
b) strictly (monotone) increasing, if an+1 > an for all n ∈ N
c) (monotone) decreasing, if an+1 ≤ an for all n ∈ N
d) strictly (monotone) decreasing, if an+1 < an for all n ∈ N.
If one of the cases i)-iv) holds, then (an) is simply called monotone.

1.12 Theorem. Every bounded and monotone real sequence (an)n≥1 converges.

a) If (an) is increasing, then an → sup{an, n ∈ N}.

b) If (an) is decreasing, then an → inf{an, n ∈ N}.

Proof. a) The hypothesis implies that s := sup{an : n ∈ N} exists. Let ε > 0 be given.
The characterisation of the supremum from Theorem I 1.22 implies that there exists
n0 ∈ N with

s− ε < an0 ≤ an ≤ s ∀ n ≥ n0.

Hence, −ε < an − s ≤ 0 ∀ n ≥ n0 and thus |an − s| < ε ∀ n ≥ n0.
b) Exercise

�

We now apply the theorem above to define the root function.

1.13 Theorem. Let a > 0 and k ∈ N with k ≥ 2. Then there exists one and only one
real number w > 0 with wk = a. In this case we write k

√
a := a1/k := w.

Proof. We begin with the existence of the number w. For this we define the sequence
(aj) recursively via

a0 := a+ 1, aj+1 := aj

(
1 +

a− akj
k · akj

)
, j ∈ N0.

Then we claim:

a) aj > 0 ∀ j ∈ N0

b) akj ≥ a ∀ j ∈ N0
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c) aj+1 ≤ aj ∀ j ∈ N0, i.e. (aj) is monotone decreasing.

We prove this by induction.

n = 0: It is trivial that a0 > 0, ak0 ≥ a and a1 ≤ a0.

Induction step: Let n ∈ N0 be such that an > 0, akn ≥ a and an+1 ≤ an. Then
kakn + a− akn > 0, hence an+1 > 0. By the Bernoulli inequality we have

akn+1 = akn

(
1 +

a− akn
kakn

)k
≥ akn

(
1 +

k(a− akn)
kakn

)
= a,

i.e. akn+1 ≥ a. Finally, an+2 ≤ an+1 since a− akn+1 ≤ 0. Thus the properties a), b) and
c) hold.

So (aj)j∈N0 is a bounded and monotone decreasing sequence. Therefore, Theorem 1.12
implies that

w := lim
j→∞

aj = inf{aj : j ∈ N}.

Further lim
j→∞

aj+1 = w and ( lim
j→∞

aj)
k =︸︷︷︸

1.8b)

lim
j→∞

akj ≥ a > 0. In addition

w ← aj+1 = aj

(
1 +

a− akj
k · akj

)
→ w ·

(
1 +

a− wk

k · wk
)
,

thus w = w(1 + a−wk

k·wk ), and so a = wk.
Uniqueness. Let u, v > 0 with uk = w = vk and u 6= v. Without loss of generality, let
u < v. Then w = uk < vk = w. Contradiction!

�

At this point, we want to give a geometric interpretation of the sequence (aj)j∈N0 .
This sequence is the foundation for a method to calculate approximations of the root of
a given number - cf. also the ‘Newton method’. Consider the tangent of the function
f(x) = xk − a at the point x = aj. This tangent intersects the x-axis in the point
x = aj+1. We furthermore remark that this method converges for every initial value
a1 > 0 and that there exists a constant M > 0 with | k

√
a−aj+1| ≤M | k

√
a−aj|2, j ∈ N.

We therefore speak of quadratic convergence of the method.

1.14 Remark. Starting from the n-th root n
√
a of a real number a ≥ 0, for p, q ∈ N

we define more generally

ap/q := (a1/q)p = (ap)1/q,

and for a > 0

a−p/q := (a−1)p/q.
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If we furthermore define a0 = 1, we obtain by induction the following calculation rules

ap+q = apaq, apq = (ap)q, apbp = (ab)p

for a > 0, b > 0 and p, q ∈ Q. The general power ax for a > 0 and x ∈ R will be defined
later via the exponential function; therefore we do not elaborate the above elementary
examination of the powers with rational exponent any further.

Now, we come to another application of Theorem 1.12

1.15 Theorem. (The number e). Let (an)n≥1 be the sequence defined by

an :=

(
1 +

1

n

)n
, n ≥ 1.

Then (an)n≥1 converges. The limit, called Euler’s number, is denoted by e and satisfies

2 ≤ lim
n→∞

an = e ≤ 3.

Proof. By Theorem 1.12 and Lemma 1.9 it is enough to show that

a) (an) is increasing and

b) 2 ≤ an ≤ 3 for all n ≥ 1.

Proof of a). For n ≥ 2 holds:

an
an−1

=

(
n+1
n

)n(
n
n−1

)n−1 =

(
n+1
n
n
n−1

)n

· n

n− 1
=

(
n2 − 1

n2

)n
· n

n− 1

=

(
1− 1

n2

)n
· n

n− 1

Bernoulli

≥ (1− 1

n
)

n

n− 1
= 1.

Thus an ≥ an−1 holds.
Proof of b). The statement a) implies that a1 = 2 ≤ an. Further:

an = (1 +
1

n
)n

Binom. Thm
=

I 1.15

n∑
j=0

(
n

j

)
1

nj
= 2 +

n∑
j=2

(
n

j

)
1

nj
.

For 2 ≤ j ≤ n we also have(
n

j

)
1

nj
=

n!

j!(n− j)!
1

nj
=

1 · 2 · · ·n
1 · · · (n− j)n · · ·n︸ ︷︷ ︸

j times

1

j!
≤ 1

j!
≤ 1

2j−1
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and hence

an ≤ 1 +
n∑
j=1

1

2j−1
= 1 +

n−1∑
j=0

1

2j
geom. series

=
I 1.11 b)

1 +
1−

(
1
2

)n
1− 1

2

< 3.

�

To conclude this section, we consider some further important limits. The proofs of the
limits d) and e) are very instructive exercises which require a good understanding of
the convergence concept.

1.16 Examples.

a) For s ∈ Q, s > 0, we have

lim
n→∞

1

ns
= 0.

Given ε > 0, we choose N0 ∈ N with N0 ≥ ε−1/s. Then we have 1
ns < ε for all n > N0.

b) For a > 0, we have
lim
n→∞

n
√
a = 1.

We first consider the case a ≥ 1. If we set bn := n
√
a − 1, the Bernoulli inequality

implies a = (1 + bn)
n ≥ 1 + nbn. This implies in particular that bn <

a
n
, and if we

choose N0 >
a
ε
, we have

| n
√
a− 1| = bn < ε, n > N0.

If a < 1, then we have a−1 > 1 and the proposition follows from 1.8 c) and the
above:

lim
n→∞

n
√
a =

(
lim
n→∞

n
√
a−1
)−1

= 1.

c) We have
lim
n→∞

n
√
n = 1.

For bn := n
√
n− 1 ≥ 0, the binomial theorem implies

n = (1 + bn)
n ≥ 1 +

n(n− 1)

2
b2n, hence n− 1 ≥ n(n− 1)

2
b2n.

Therefore, b2n ≤ 2
n

for all n ∈ N, and if we choose for given ε > 0 an N0 ∈ N such that
N0 ≥ 2

ε2
, then we have

| n
√
n− 1| = bn < ε, n > N0.

d) For a ∈ C with |a| > 1 and k ∈ N, we have

lim
n→∞

nk

an
= 0,
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i.e. for a with |a| > 1, the function n 7→ an grows faster than any power n 7→ nk. In this
situation, we observe two contrary effects: the numerator nk exceeds any bound, while
the term 1

an tends to zero. At first sight, it is not evident which tendency outweighs
the other.

e) For a ∈ C, we have

lim
n→∞

an

n!
= 0,

i.e. the factorial function n 7→ n! grows faster than any of the functions n 7→ an.
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2 Bolzano-Weierstrass Theorem

In the previous chapter we have observed that all convergent sequences are bounded.
In the following, we will examine the converse situation, i.e. we consider bounded
sequences and ask if there exist convergent subsequences. If we consider for example
the sequence (an)n∈N = (−1)n, the above question is easy to answer: there are at least
two convergent subsequences, namely (a2n)n∈N and (a2n+1)n∈N. The following theorem
of Bolzano-Weierstraß gives an affirmative answer to this question in a general context.

We begin this section with the formal definition of a subsequence of a given sequence.

2.1 Definition. Let (an) be a sequence and ϕ : N→ N be a strictly increasing function
(i.e. ϕ(n + 1) > ϕ(n) ∀ n ∈ N). Then

(
aϕ(k)

)
k∈N is called a subsequence of (an). If we

put ϕ(k) := nk, we write (ank
)k∈N.

Example. Let an := (−1)n. Take ϕ(n) = 2n, then a2n = 1 ∀ n ∈ N0. If we choose
ϕ(n) = 2n+ 1, then a2n+1 = −1 ∀ n ∈ N0 .

2.2 Lemma. Let (an)n∈N0 be a real sequence. Then (an)n∈N0 has a monotone subse-
quence.

Proof. Let (an)n∈N0 be a sequence of real numbers. Consider

A := {k ∈ N0 : ak ≥ am for all m > k}.

Now either A has only finitely many elements, or else it has infinitely many.

Case 1: Suppose A has infinitely many elements. Then define n0 := minA and

ni+1 := min(A\(
i⋃

j=0

{nj})) , i ∈ N0 .

Then (ank
)k∈N0 is decreasing.

Case 2: Suppose A has finitely many elements. If A 6= ∅ we let n0 := maxA + 1. If
A = ∅ we let n0 := 0. Then since n0 6∈ A there exist m > n0 such that am > an0 . Let
n1 be the least such m. Since also n1 6∈ A we can continue, and in general define an
increasing subsequence (ank

)k∈N0 by

ni+1 := min{k : k > ni and ak > ani
}.

�
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2.3 Theorem. (Bolzano-Weierstrass, 1st Version) Every bounded sequence
(an)n∈N0 ⊂ C has a convergent subsequence.

Proof. a) Let (an) ⊂ R. Then the claim follows from Lemma 2.2 and Theorem 1.12.

b) Let (an) ⊂ C. Then (Re an)n∈N0 is a real and bounded sequence. According to
a) it possesses a convergent subsequence

(
Re aϕ1(k)

)
n∈N. Further,

(
Im aϕ1(k)

)
n∈N is

a real and bounded sequence. Again from a), there exists a convergent subsequence
(Im aϕ2(ϕ1(k)))k∈N. We put ϕ = ϕ2 ◦ ϕ1. Then ϕ is strictly increasing and

(
aϕ(k)

)
k∈N is

a convergent subsequence of (an)n∈N.
�

In order to formulate another version of the Bolzano-Weierstrass theorem, we consider
next the following definition of a cluster point.

2.4 Definition. (Cluster point). A number a ∈ C is called a cluster point of a sequence
(an)n ⊂ C, if for each ε > 0 there exist infinitely many n ∈ N such that |a− an| < ε.

2.5 Examples. a) Let an = (1
2
, 2, 1

3
, 3, 1

4
, 4, . . . ). Then a = 0 is a cluster point of (an);

but the sequence (an) is divergent.

b) The sequence (an) = (in) = (1, i,−1,−i, 1, i,−1, . . . ) has 4 cluster points, namely
1, i,−1,−i and 4 convergent subsequences.

c) Let an = n for all n ∈ N. Then (an) does not have cluster points and does not have
a convergent subsequence.

2.6 Remarks. In the following let K = R or C.

a) For a ∈ K and ε > 0 set Uε(a) := {z ∈ K : |a− z| < ε}. Then Uε(a) is called an
ε-neighborhood of a.

b) a is the limit of the sequence (an)n ⊂ K ⇔ for each ε > 0, Uε(a) contains almost
all an, i.e. Uε(a) contains an for all but finitely many n.

c) a is a cluster point of the sequence (an) ⊂ K ⇔ for each ε > 0, Uε(a) contains
infinitely many members of the sequence (an)n .

2.7 Lemma. Let (an) be a sequence in K and a ∈ C. Then a is a cluster point of (an)
if and only if there exists a subsequence (ank

)k∈N0
of (an)n with lim

k→∞
ank

= a.
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Proof. ” =⇒ ”: Remark 2.6 c) implies that for each ε > 0 infinitely many sequence
members an lie in Uε(a). Let n0 := 0 and for all k ≥ 1 choose an nk > nk−1 with
ank
∈ U 1

k
(a). Then (nk)n∈N is strictly increasing and |a− ank

| < 1
k
, k ≥ 1, i.e.

lim
k→∞

ank
= a.

”⇐= ”: Let a := lim
k→∞

ank
. Then for each ε > 0 we have that Uε(a) contains almost all

members ank
of (ank

)k , and thus infinitely many of (an)n , cf. Remark 2.6 b), c).
�

2.8 Theorem. (Bolzano-Weierstrass, 2nd Version). Every real and bounded sequence
(an)n∈N has a cluster point. Further, the set of cluster points of (an)n∈N has a minimum
r and a maximum s.

Remarks. In the situation above we set

(Limit Inferior) lim
n→∞

inf an := lim an := r (= lim
n→∞

(inf{ak : k ≥ n}), see (T5.2))

(Limit Superior) lim
n→∞

sup an := lim an := s (= lim
n→∞

(sup{ak : k ≥ n}), see (T5.2)).

Proof. Let H := {h ∈ R : h is a cluster point of (an)}. Then

inf an ≤ h ≤ sup an for all h ∈ H.

Further H 6= ∅, due to the first version of the Bolzano-Weierstrass Theorem 2.3. In
addition, the Completeness Axiom implies that s := supH exists. We still have to show
that s ∈ H holds. To this end, let ε > 0. By the characterisation of the supremum
given in Theorem I,1.22, there exists a ∈ H with

a ≤ s < a+
ε

2
,

thus |s− a| < ε
2
. For x ∈ Uε/2(a) we then have

|s− x| ≤ |s− a|+ |a− x| < ε

2
+
ε

2
= ε,

i.e. Uε/2(a) ⊂ Uε(s). Now Uε/2(a) contains infinitely many an, and so does Uε(s).
Remark 2.6 implies that s ∈ H. The proof for the limit inferior follows the same
pattern.

�
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2.9 Examples. a) We again consider the sequence (an)n∈N = ((−1)n)n∈N. Clearly, we
have lim supn→∞ an = 1 and lim infn→∞ an = −1.

b) Consider the sequence

1 ,
1

2
,
2

2
,
3

2
,
1

3
,
2

3
,
3

3
,
4

3
,
5

3
,
1

4
, . . . ,

7

4
,
1

5
, . . . ,

9

5
, . . .

which is formally defined as

an =
j

k + 1
for n = k2 + j, j = 1, 2, . . . , 2k + 1, k ∈ N0.

Then every rational number q with 0 < q < 2 is contained in this sequence (even in-
finitely many times) and we have lim supn→∞ an = 2 and lim infn→∞ an = 0. Moreover,
every x with 0 ≤ x ≤ 2 is a cluster point of this sequence. In particular, the sequence
has infinitely many cluster points.

So far we have studied the convergence of a sequence only for the case in which the
limit was explicitly known. An exception to this is only Theorem 1.12. We consider
now the so called “inner” criterion.

2.10 Definition. A sequence (an) ⊂ K is called Cauchy sequence if for each ε > 0
there exists an n0 ∈ N such that

|an − am| < ε for all n,m ≥ n0.

The significance of this criterion is that it provides a necessary and sufficient con-
dition for the convergence of (an)n∈N without involving the limit a itself.

2.11 Theorem (Cauchy criterion for sequences). Let (an) ⊂ K be a sequence.
Then (an) is convergent, if and only if (an) is a Cauchy sequence.

Proof. ” =⇒ ”: Let a = lim an and ε > 0. Then there exists n0 ∈ N with |a− an| < ε
2

for all n > n0, thus

|an − am| ≤ |an − a|+ |a− am| <
ε

2
+
ε

2
= ε, n,m ≥ n0.

”⇐= ”: Let (an) be a Cauchy sequence. We divide the proof in 3 steps:
a) The sequence (an) is bounded: For ε = 1 there exists an m0 such that

|an| − |am0 | ≤ |an − am0| < 1 for all n ≥ m0.

Thus |an| ≤ 1+|am0| for n ≥ m0. Hence |an| ≤ max{|a0|, |a1| . . . , |am0−1|, |1+am0|}, n ∈
N, and (an) is a bounded sequence.
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b) The first version of the Bolzano-Weierstrass theorem implies that (an) has a con-
vergent subsequence (ank

)k∈N with limk→∞ ank
= a.

c) Let ε > 0. The hypothesis implies that m1 ∈ N exists with |an − am| < ε
2

for all
n,m ≥ m1. Step b) implies further that |a− ank

| < ε
2
, nk > m1. Thus

|an − a| ≤ |an − ank
|︸ ︷︷ ︸

< ε
2

+ |ank
− a|︸ ︷︷ ︸

< ε
2

< ε for all n ≥ m1 ,

i.e. an
n→∞−→ a.

�

2.12 Remarks. a) The property that every Cauchy sequence converges in K is also
called the completeness of K.

b) The set of rational numbers Q = {p
q

: p ∈ Z, q ∈ N} is not complete.

c) We have
Completeness axiom ⇐⇒ Archimedean property and completeness of R

⇐⇒ Archimedean property and theorem of Bolzano-
Weierstrass in R

d) For q ∈ C, q 6= 1 with |q| = 1 set an := qn. Then

|an+1 − an| = |q|n|q − 1| = |q − 1| > 0, for all n ≥ 1,

i.e. (an) is not a Cauchy sequence. Thus (an) is divergent. Therefore, for q ∈ C, q 6=
1, |q| = 1:

(qn)n∈N is convergent ⇐⇒ |q| < 1 or q = 1.

We introduce the following notation: for a, b ∈ R with a ≤ b let

[a, b] := {x ∈ R : a ≤ x ≤ b}.

2.13 Theorem. (Banach fixed point theorem). Let a, b ∈ R with a < b, and let
f : [a, b]→ [a, b] be a mapping. Assume that there exists q, 0 < q < 1 such that for all
x, y ∈ [a, b] we have

|f(x)− f(y)| ≤ q |x− y|. (2.1)

Then there exists a unique r ∈ [a, b] with f(r) = r. This means that r is the unique
fixed point of f .

2.14 Remark. A mapping which satisfies the condition (2.1) is called a strict contrac-
tion.
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Proof. For x0 ∈ [a, b] and n ∈ N0, define

xn+1 := f(xn).

Then the following statements hold:
a) The sequence (xn)n∈N is convergent: We show first the inequality

A(m) : |xm − xm−1| ≤ qm−1|x1 − x0|, m ≥ 1

via induction. The basis step m = 1 is clear. Let m ∈ N, such that A(m) is true. Then

|xm+1 − xm| = |f(xm)− f(xm−1)|
contr.

≤ q|xm − xm−1|
I.H.

≤ qqm−1|x1 − x0| = qm|x1 − x0|.

Thus A(m+ 1) is true, and so the inequality holds for all m ≥ 1.
Next we estimate |xm − xn| for m > n:

|xm − xn| ≤ |xm − xm−1|+ |xm−1 − xm−2|+ · · ·+ |xn+1 − xn|
≤ (qm−1 + qm−2 + · · ·+ qn)|x1 − x0|

geom. series
= qn

1− qm−n

1− q
|x1 − x0| ≤

qn

1− q
|x1 − x0|.

From Remark 2.12 d) it follows that lim
n→∞

qn = 0, because 0 < q < 1. Thus (xn) is a

Cauchy sequence and Theorem 2.11 implies that (xn) converges. We set r := lim
n→∞

xn.

b) We show f(r) = r: Let ε > 0 be given. Then there exists n0 ∈ N0 with |r− xn| < ε
2

for all n ≥ n0, thus

|f(r)− r| ≤ |f(r)− xn0+1|+ |xn0+1 − r|
Def.
= |f(r)− f(xn0)|+ |xn0+1 − r|
≤ q|r − xn0 |+ |xn0+1 − r| <

ε

2
+
ε

2
= ε.

The classical method of deduction in analysis from chapter I implies that f(r) = r.

c) We next show that the fixed point r is uniquely determined.
Assume that there exists an r′ ∈ [a, b] with f(r′) = r′. Then

|r − r′| = |f(r)− f(r′)| ≤ q|r − r′|.

From this it follows that (1 − q)|r − r′| = 0, which implies that |r − r′| = 0 and,
therefore, that r = r′.

�
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2.15 Remarks.

a) The proof above is constructive, i.e. we build the fixed point r as r = lim
n→∞

fn(x0)

with fn = f ◦ f · · · ◦ f .

b) The following error estimates hold:

|r − xn| ≤
qn

1− q
|x1 − x0| a-priori-estimate

|r − xn| ≤
q

1− q
|xn − xn−1| a-posteriori-estimate

c) The Banach fixed point theorem also holds if [a,b] is replaced by R or by M := {a ∈
R : a ≤ x}.
d) A generalization of this theorem to mappings on so-called complete metric spaces
will be very important in the lecture “ Ordinary Differential Equations”.

To conclude this section, we discuss the concepts of infinite limits .
Often, it is convenient to write lim an =∞ if the terms of a sequence become large

for large n, although strictly speaking, the sequence is divergent, and of course∞ is not
its limit, as it is not even a number. Nevertheless, this notation is often very natural
and convenient and, therefore, we now make precise what we mean if we use it.

Let (an)n∈N be a real sequence. We write

lim an =∞ (−∞),

if for arbitrary, fixed K > 0 there exists an N0 ∈ N with an ≥ K (an ≤ −K) for all
n ≥ N0. Furthermore, we write

lim sup an =∞ (lim inf an = −∞),

if for each K > 0 there exists an N0 ∈ N with aN0 ≥ K (aN0 ≤ −K).
For a complex sequence (cn)n∈N, we write

lim cn =∞,

if for each K > 0 there exists an N0 ∈ N with |cn| ≥ K for all n ≥ N0.
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3 Infinite Series

Let (an) be a sequence in K, where again K = R or K = C. In this section we
analyze the question, how the notation

∑∞
n=0 an has to be understood and under

which conditions one can speak of a convergent/divergent infinite series.

3.1 Definition. a) Let (an)n∈N0 be a sequence in K. By the (infinite) series with terms
an, notation

a0 + a1 + a2 + . . . or
∞∑
j=0

aj,

we mean the sequence of partial sums (sn)n∈N0 ,

sn :=
n∑
j=0

aj , sn being the n-th partial sum of the series.

That is, we use the symbol
∑∞

j=0 aj to denote the sequence (sn)n∈N0 .

b) If the sequence (sn)n∈N0 converges to s ∈ K, then the series
∑∞

j=0 aj is called
convergent. In this case we use the symbol

∑∞
j=0 aj also to denote the limit s of the

sequence of partial sums. That is, we set
∞∑
j=0

aj := s.

Otherwise, the series is called divergent.

3.2 Examples. .

a) Geometric series. If q ∈ C with |q| < 1, then
∞∑
j=0

qj =
1

1− q
.

For consider sn =
∑n

j=0 q
j I,1.11 b)

= 1−qn+1

1−q
n→∞−→
1.7 b)

1

1− q
.

b) Harmonic series. The series

∞∑
n=1

1

n
diverges.

For consider for n ≥ 1 the difference s2n − sn =
2n∑

j=n+1

1

j
≥ n · 1

2n
=

1

2
,

i.e., (sn)n∈N is not a Cauchy sequence, thus does not converge!
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c) The series
∑∞

n=1
1

n(n+1)
converges and

∞∑
n=1

1

n(n+ 1)
= 1.

In fact 1
j(j+1)

= 1
j
− 1

j+1
, and

sn =
n∑
j=1

(
1

j
− 1

j + 1
) = 1− 1

n+ 1

n→∞−→ 1.

Sums of type
∑n

j=0(cj − cj+1) are called telescoping sums.

The Cauchy Criterion 2.11 is an inner criterion for the convergence of sequences. The
following lemma gives an analogue criterion for series.

3.3 Lemma. (Cauchy’s Convergence Criterion). The series
∑∞

j=0 aj converges, if
and only if for each ε > 0 there exists N0 ∈ N with

|
m∑
j=n

aj| < ε for all n,m ≥ N0.

Proof. Since |
∑m

j=n aj| = |sm − sn−1|, the claim follows from Cauchy’s criterion for
sequences, Theorem 2.11.

�

If we set n = m in the above lemma, we see that the summands of a convergent
series always form a null sequence. We write down this important fact in the following
corollary.

3.4 Corollary. Assume that
∑∞

j=0 aj converges. Then limj→∞ aj = 0.

Proof. Choose n = m in the above Lemma 3.3.
�

We note, that the example of the harmonic series shows that the converse of Corollary
3.4 does not hold.

3.5 Remark. Let (aj) be a sequence with non-negative elements, i.e. aj ≥ 0 for all
j ∈ N0. Then

∑∞
j=1 aj converges, if and only if the sequence of partial sums (sn)n∈N0

is bounded.

Proof. Assume that
∑∞

j=0 aj converges, i.e. the sequence of the partial sums (sn)n∈N
converges. Theorem 1.6 implies now that (sn)n∈N is bounded.
Conversely, (

∑n
j=0 aj)n∈N0 is increasing, since aj ≥ 0. By assumption (sn)n∈N is

bounded, which according to Theorem 1.12 means that (sn)n∈N converges.
�
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3.6 Example. We consider the series
∑∞

n=0
1
n!

and show in the following that we have

∞∑
n=0

1

n!
= e

where the number e was defined as e = lim
n→∞

(1 + 1
n
)n already in 1.15.

Let an := (1+ 1
n
)n for n ∈ N. The proof of Theorem 1.15 implies, that an ≤

∑n
j=0

1
j!
≤ 3

for all n ≥ 1. Thus (
∑n

j=0
1
j!
)n∈N is bounded and Remark 3.5 implies that

∑∞
j=0

1
j!

converges. Let e′ :=
∑∞

j=0
1
j!

be the limit of the series. Then by Lemma 1.9 we have

that lim an = e ≤
∑∞

j=0
1
j!

= e′. Thus e ≤ e′.

We now show the inverse inequality: e ≥
∑m

j=0
1
j!

for each fixed m ∈ N. Indeed for
n > m ≥ 1

an
Bin.Thm.

=
n∑
j=0

(
n

j

)
1

nj
≥

m∑
j=0

(
n

j

)
1

nj
=

m∑
j=0

1

j!

j-factors︷ ︸︸ ︷
n

n︸︷︷︸
=1

n− 1

n︸ ︷︷ ︸
→1

. . .
n− j + 1

n︸ ︷︷ ︸
→1︸ ︷︷ ︸

→1(n→∞)

.

Thus according to Lemma 1.9, limn→∞ an = e ≥
∑m

j=0
1
j!

uniformly in m, thus

e ≥ limm→∞
∑m

j=0
1
j!

= e′. Hence, summarizing, we have e′ = e.
�

To obtain estimates for Euler’s number e, consider

dn,k := sn+k − sn, k, n ∈ N , where sn =
n∑
j=0

1

j!
.

We have for arbitrary n, k ∈ N that

1

(n+ 1)!
≤ dn,k ≤

sk − 1

(n+ 1)!
,

which yields for k →∞

1

(n+ 1)!
≤ e− sn ≤

e− 1

(n+ 1)!
. (3.1)

In addition to giving us 2, 66 < e < 2, 8 for n = 2, the above estimate is the basis for
the following proof of the irrationality of e.

3.7 Theorem. Euler’s number e is irrational.
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Proof. Assume that e is rational. Then we can write e in the form e = p/q with
p, q ∈ N. Take the above estimate for n = q and multiply the inequality with q!. Then
you get

0 <
1

q + 1
≤ p(q − 1)!− q!sq <

2

q + 1
≤ 1,

and therefore
0 < p(q − 1)!− q!sq < 1.

This is impossible, because p(q − 1)!− q!sq ∈ Z.
�

In the following, we examine the convergence of series with alternating signs in the
summands. We begin with Dirichlet’s criterion.

3.8 Theorem. (Dirichlet’s Convergence Criterion). Let an ∈ C for all n ≥ 1 be such
that the partial sums (sn)n∈N = (

∑n
j=1 aj)n∈N are bounded. Let (εn)n∈N be a decreasing

null sequence. Then
∑∞

j=1 εjaj converges.

An important consequence is the so-called Leibniz-Criterion.

3.9 Corollary. (Leibniz Criterion). Let (εn)n∈N be a decreasing (hence real) null se-
quence. Then

∑∞
j=1(−1)jεj converges.

3.10. Examples and Remarks. a) The series

∞∑
j=0

(−1)j
1

j + 1
= 1− 1

2
+

1

3
− 1

4
+

1

5
− . . .

converges and is called alternating harmonic series. We show in Analysis II, that the
limit value of the series

∑∞
j=0(−1)j 1

j+1
is equal to log 2.

b) A series of the form
∑∞

j=0(−1)jaj with aj ≥ 0 for all j ∈ N0 is called alternating.

Proof of Theorem 3.8 For m,n ∈ N with m ≥ n set

σn,m :=
m∑
j=n

εjaj.

The assumption says that limj→∞ εj = 0; thus according to Lemma 3.3 (Cauchy Cri-
terion) it is enough to show that there exists a constant M > 0 with

|σn,m| ≤Mεn for all m,n ≥ 1.
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We first transform σn,m by Abel’s summation by parts: Set sn :=
∑n

j=1 aj and s0 = 0
to obtain for m ≥ n ≥ 1

σn,m =
m∑
j=n

εjaj =
m∑
j=n

εj(sj − sj−1) =
m∑
j=n

εjsj −
m∑
j=n

εj sj−1

=
m∑
j=n

εjsj −
m−1∑
j=n−1

εj+1sj =
m−1∑
j=n

(εj − εj+1)sj + εmsm − εnsn−1.

With C := sup{|sn|, n ∈ N} we get from the above that (recall (εj)j is decreasing)

|σn,m| ≤
m−1∑
j=n

(εj − εj+1)︸ ︷︷ ︸
≥ 0

|sj|+ εm|sm|+ εn|sn−1|

≤
m−1∑
j=n

(εj − εj+1)C + εmC + εnC

= (εn − εm)C + εmC + εnC = 2εnC = 2 C︸︷︷︸
=:M

εn .

�

A very important concept in the topic of convergence of series is that of absolute
convergence.

3.11 Definition. (Absolute Convergence). A series
∑∞

j=0 aj is called absolutely con-
vergent, if

∑∞
j=0 |aj| converges.

3.12 Remark. Every series
∑∞

j=0 aj which converges absolutely, converges.

In fact |
∑m

j=n aj| ≤
∑m

j=n |aj| for all m ≥ n. Thus, the claim follows from the Cauchy
criterion for series, Lemma 3.3.

3.13 Theorem. (Comparison Test [Majorantenkriterium]). Let (aj)j∈N0 ⊂ C and
(bj)j∈N0 ⊂ R be two sequences such that |aj| ≤ bj for almost all j ∈ N. If

∑∞
j=0 bj

converges, then
∑∞

j=0 aj converges absolutely.

In the situation above the series
∑∞

j=0 bj is said to dominate or majorise
∑∞

j=0 aj.

Proof. Since
∑m

j=n |aj| ≤
∑m

j=n bj for all m ≥ n, the claim follows from the Cauchy
criterion Lemma 3.3.

�
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Example. In Example 3.2 c) we have shown that
∑∞

j=1
1

j(j+1)
converges. Observing

that 0 < 1
(j+1)2

≤ 1
j(j+1)

for j ≥ 1, it follows that
∑∞

j=1
1

(j+1)2
converges and hence so

does
∑∞

j=1
1
j2

= 1 +
∑∞

j=1
1

(j+1)2
.

In particular, if we choose as dominating series the geometric series, we get the so-called
Root Test.

3.14 Theorem. (Root Test [Wurzelkriterium]). Let (an)n be a sequence in C.
a) Assume that there exists some q, 0 < q < 1, with

j

√
|aj| ≤ q for almost all j ∈ N.

Then
∑∞

j=0 aj is absolutely convergent.

b) If we have j
√
|aj| ≥ 1 for infinitely many j ∈ N, then

∑
aj diverges .

Proof. a) By assumption, there exists N0 ∈ N with j
√
|aj| ≤ q for all j ≥ N0. Thus

|aj| ≤ qj for all j ≥ N0, which implies that
∑∞

j=N0
|aj| is dominated by the geometric

series
∑∞

j=1 q
j. (Note: The finite sum a0 + ·+ aN0−1 is trivially convergent.)

b) The assumption says, that j
√
|aj| ≥ 1 for infinitely many j ∈ N. Thus |aj| ≥ 1 for

infinitely many j ∈ N. In particular, the sequence (aj)j is not a null sequence, which
means that

∑∞
j=1 aj diverges.

�

Example. The series
∑∞

j=0
jl

2j converges for each fixed l ∈ N, because

n
√
|an| =

n
√
nl

2
=

( n
√
n)l

2
−→ 1

2
;

Thus j
√
|aj| ≤ 2

3
= q < 1 for almost all j ∈ N.

Often it is easier to implement the following test.

3.15 Theorem. (Ratio Test [Quotientenkriterium]).
a) Let aj 6= 0 for almost all j ∈ N and assume that there exists 0 < q < 1 with

|aj+1

aj
| ≤ q for almost all j ∈ N.

Then
∑∞

j=0 aj converges absolutely.

b) If |aj+1

aj
| ≥ 1 for almost all (not only for infinitely many) j ∈ N, then

∑∞
j=0 aj

diverges.
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Proof. a) By assumption, there exists N0 ∈ N with |aj+1

aj
| ≤ q for all j ≥ N0. Thus

for all n ≥ N0 + 1

| an
aN0

| (∗)
=

n−1∏
j=N0

|aj+1

aj
| = (

aN0+1

aN0

aN0+2

aN0+1

· · · an
an−1

)
Ass.

≤ qn−N0 .

Thus |an| ≤ |aN0|qn−N0 for all n ≥ N0 + 1 and

∞∑
n=0

|an| ≤
N0∑
n=0

|an|+
|aN0|
qN0

∞∑
n=0

qn .

Now, the Comparison Test implies the claim.

b) The assumption and the relation (*) imply, that | an

aN0
| ≥ 1 for all n ≥ N0 +1. Hence

(an) is not a null sequence and
∑
aj diverges.

�

3.16 Example. The exponential series

∞∑
j=0

zj

j!

converges for all z ∈ C. This is clear for z = 0. Furthermore, for z 6= 0 we have

|aj+1

aj
| = |zj+1|

(j + 1)!

j!

|zj|
=
|z|
j + 1

j→∞−→ 0

i.e. |aj+1

aj
| ≤ 1

2
for almost all j ∈ N.

Now consider variants of the above root and quotient tests, in which the existence of
a number q with 0 < q < 1 is replaced by a condition concerning the limit inferior or
the limit superior, respectively.

3.17 Theorem. (Another formulation of the Root and Ratio Tests).

a) If limj→∞
j
√
|aj| < 1, then

∑∞
j=0 aj converges absolutely.

b) If limj→∞
j
√
|aj| > 1, then

∑∞
j=0 aj diverges.

c) Let aj 6= 0 for almost all j ∈ N and limj→∞|aj+1

aj
| < 1. Then

∑∞
j=0 aj converges

absolutely.

d) If limj→∞|
aj+1

aj
| > 1, then

∑∞
j=0 aj diverges.



3. INFINITE SERIES 39

3.18 Remarks. a) If limj→∞
j
√
|aj| = 1, then no conclusion for convergence can be

made! Indeed, consider for example aj = 1
j

and bj = 1
j2

. Then by Example 1.16 c) and
Remark 1.14, we have

j

√
|aj| = j

√
1

j
=

1
j
√
j

j→∞−→ 1 and

j

√
|bj| = j

√
1

j
=

1
j
√
j2

j→∞−→ 1,

but
∑∞

j=1 aj diverges, while
∑∞

j=1 bj converges.

b) The Ratio Test is ”weaker” than the Root Test, i.e.

lim
j→∞

j

√
|aj| ≤ lim

j→∞
|aj+1

aj
|.

We conclude this first section about convergence of series with Cauchy’s Conden-
sation Test.

3.19 Theorem. (Cauchy’s Condensation Test). Let (an) be a decreasing null se-
quence. Then:

∞∑
j=0

aj converges ⇐⇒
∞∑
j=0

2ja2j converges.

The above theorem says that we can completely read off the convergence behavior of a
given sequence from the convergence behavior of the ‘condensed’ sequence which only
has elements with indexes 2j, and thus far less elements than the original series.

Proof. Let sn :=
∑n

j=0 aj and tn :=
∑n

j=0 2ja2j .

′′ =⇒′′: For n ≥ 2j

sn ≥ a1 + a2 + (a3 + a4) + (a5 + · · · a8) + · · ·+ (a2j−1+1 + · · ·+ a2j)

≥ a1

2
+ a2 + 2a4 + 4a8 + · · ·+ 2j−1a2j

=
1

2
(a1 + 2a2 + 4a4 · · ·+ 2ja2j) =

1

2
tj

Let
∑∞

j=0 aj =: s. Then tj ≤ 2s for all j and according to Remark 3.5
∑∞

j=0 2ja2j

converges.

′′ ⇐=′′: Let n ≤ 2j+1 − 1. Then

sn ≤ a0 + a1 + (a2 + a3) + (a4 · · ·+ a7) + · · ·+ (a2j + · · ·+ a2j+1−1)

≤ a0 + a1 + 2a2 + 4a4 + · · ·+ 2ja2j = a0 + tj
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Let t =
∑∞

j=0 2ja2j . Then sn ≤ a0 + t for all n ≥ 0 and Remark 3.5 implies that∑∞
j=0 aj converges.

�

The above theorem implies, that the series

∞∑
n=1

1

nα
,

with α ∈ Q, converges if and only if α > 1. The corresponding condensed series

∞∑
j=0

2j2−jα =
∞∑
j=0

2(1−α)j =
∞∑
j=0

qj with q := 21−α

is a geometric series and converges by 3.2 if and only if q < 1, or equivalently α > 1.
Bear in mind that at the moment, we have defined nα only for α ∈ Q; we will define
nα for arbitrary α ∈ R later.

The function given by the convergent series

ζ(s) :=
∞∑
n=1

1

ns
, s > 1

(at the moment only for s ∈ Q), is the famous Riemann zeta function . It is an
important tool to study the distribution of prime numbers. In the lecture ‘Analysis
II’, we will prove ζ(2) = π2

6
. The still unsolved Riemann hypothesis states that all

nontrivial roots of the zeta function have real part 1
2
.
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4 Rearrangement and Products of Series

If we add finitely many real or complex numbers, the result does not depend on the
order of the summands, i.e. any arbitrary rearrangement of the summands yields the
same result. For infinite series, the situation is completely different. We will see in the
following section that it is possible to change the value of a series by rearranging its
terms and that one can even achieve divergence of a former convergent series this way.
However, this at first sight quite surprising effect does not appear for absolutely conver-
gent series. This is a reason why the concept of absolute convergence is so important.
Of course, for a precise description of the situation we must first define the concept of
rearrangement. We start with an example.

Consider the alternating harmonic series

1− 1

2
+

1

3
− 1

4
+ . . .+

1

2j − 1
− 1

2j
+ . . . ,

as well as a rearrangement of it, which is given by

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
+

1

7
+ . . . .

We denote the n-th partial sum of the original and the rearranged series by sn and tn,
respectively, and we define s := limn→∞ sn. Then we have

s2 = 1
2

2t3 = 2 · 1
4

= 1
2

s4 = 1
2

+ 1
3
− 1

4
2t6 = 1

2
+ 2(

1

3
− 1

6
− 1

8
)︸ ︷︷ ︸

1
3
− 1

4

s6 = 1
2

+ (1
3
− 1

4
) + (1

5
− 1

6
) 2t9 = 1

2
+ (1

3
− 1

4
) + 2(

1

5
− 1

10
− 1

12
)︸ ︷︷ ︸

1
5
− 1

6

and because of 1
2j−1
− 1

4j−2
− 1

4j
= 1

2
( 1

2j−1
− 1

2j
), we can infer 2t3n = s2n for all n ≥ 1.

Because (s2n)n∈N converges to s and the terms of the rearranged series converge to
0, there exists for each ε > 0 an N0 ∈ N such that at the same time |t3n − s

2
| < ε

2
,

|t3n+1 − t3n| < ε
2

and |t3n+2 − t3n| < ε
2

for all n ≥ N0. This implies |tm − s
2
| < ε

2
for all

m > 3N0 + 2, which means that the rearranged sequence converges to s/2.

This example motivates the following definition.

4.1 Definition. Let
∑∞

n=0 an be a series of complex numbers and ϕ : N0 → N0 a
bijective mapping. Then

∑∞
n=0 aϕ(n) is called rearrangement of the series

∑∞
n=0 an.

Further the series
∑∞

n=0 an is called unconditionally convergent, if every rearrangement
of the series

∑∞
n=0 an has the same limit value.
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4.2 Theorem. Every absolutely convergent series
∑∞

n=0 an is unconditionally conver-
gent.

Proof. Let ϕ : N0 → N0 be a bijective mapping. Let

sn :=
n∑
j=0

aj, tn :=
n∑
j=0

aϕ(j).

We show, that (tn)n converges to s, where s denotes the limit value of the sequence sn,
i.e. s := limn→∞ sn. According to the definition of the convergence of

∑
|an|, for ε > 0

there exists an N0 ∈ N with
∞∑

j=N0

|aj| <
ε

2
.

Hence

|s−
N0−1∑
j=0

aj| = |
∞∑

j=N0

aj| ≤
∞∑

j=N0

|aj| <
ε

2
.

Now choose N1 so large, that {0, 1, 2 · · ·N0− 1} ⊂ {ϕ(0), ϕ(1) · · ·ϕ(N1)}. Then for all
m ≥ N1 holds

|
m∑
j=0

aϕ(j) − s| ≤ |
m∑
j=0

aϕ(j) −
N0−1∑
j=0

aj|+ |
N0−1∑
j=0

aj − s|︸ ︷︷ ︸
< ε

2

≤
∞∑

j=N0

|aj|+
ε

2
≤ ε.

Thus (tm) converges to s.
�

The following result (due to Riemann) is quite surprising.

4.3 Theorem. (Riemann Rearrangement Theorem). Let
∑∞

n=0 an be a convergent,
but not absolutely convergent series of real numbers. Then there exists for every b ∈ R
a rearrangement

∑∞
n=0 aϕ(n), which converges to b.

The Riemann Rearrangement Theorem has the remarkable consequence, that you may
only rearrange finitely may terms in a convergent series which is not absolutely conver-
gent — otherwise the concept of convergent series does not make sense any more! On
the other hand, the above Theorem 4.2 says that the value of an absolutely convergent
series is invariant under rearrangement.

We do not prove the Riemann Rearrangement Theorem here and instead refer to the
book of Mangold/Knopp.
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In the following, we want to multiply two convergent series
∑∞

n=0 an and
∑∞

n=0 bn. For
this, we consider the product

(a0 + a1 + a2 + · · · )(b0 + b1 + · · · ).

Expanding gives terms of the following form, which have to be summed up.

a0b0 a0b1 a0b2 a0b3 · · ·
a1b0 a1b1 a2b1 · · ·
a2b0 a2b1 a2b2 · · ·

There is the question, in which order should the single terms be summed up. In
particular, we ask when

(
∞∑
j=0

aj)(
∞∑
j=0

bj) =
∞∑
j=0

pj,

with pϕ(l,m) = albm for l,m ∈ N0 and some bijection ϕ : N0 × N0 → N0. Possible
orderings are

0 1 3 6 or 0 → 1 4 9
↙ ↙ ↙ ↓ ↓

2 4 7 3 ← 2 5
↙ ↙ ↓

5 8 8 ← 7 ← 6
↙

9

We call the series
∑∞

j=0 pj a product series of
∑
aj and

∑
bj if pϕ(l,m) = albm for all

l,m ∈ N0 and ϕ : N0 × N0 → N0 is bijective.

4.4 Theorem. Let
∑∞

j=0 aj and
∑∞

j=0 bj be two absolutely convergent series. Then all
their product series converge to

(
∞∑
j=0

aj) · (
∞∑
j=0

bj)

.

Proof. Let
∑∞

j=0 pj be an arbitrary product series of
∑∞

j=0 aj and
∑∞

j=0 bj. Then there
exists for all n ∈ N an m ∈ N with

n∑
j=0

|pj| ≤
m∑
j=0

|aj|
m∑
j=0

|bj| ≤
∞∑
j=0

|aj|
∞∑
j=0

|bj|.



44 CHAPTER II. CONVERGENCE OF SEQUENCES AND SERIES

Now Remark 3.5 implies that
∑∞

j=0 |pj| converges. Further, from Remark 3.12 it
follows that also

∑∞
j=0 pj converges, and Theorem 4.2 implies that the convergence is

unconditional (i.e. independent from the chosen order). This means that every product
series converges to the same s ∈ C.

Use now the special product series given by

a0b0 a0b1 a0b2 · · · q0 q1 q4 · · ·
↓ ↓ ↓ ↓

a1b0 ← a1b1 a1b2 · · · q3 ← q2 q5 · · ·
↓ ↓

a2b0 ← a2b1 ← a2b2 · · · q8 ← q7 ← q6 · · ·

Then we have

q0 + q1 + · · · q(n+1)2−1 = (a0 + · · ·+ an)︸ ︷︷ ︸
n→∞−→

∑∞
j=0 aj

(b0 + · · ·+ bn)︸ ︷︷ ︸
n→∞−→

∑∞
j=0 bj

.

From this, the claim follows.
�

If one chooses the following order for the summation

a0b0 a0b1 a0b2 or p0 p1 p3

↙ ↙ ↙ ↙
a1b0 a1b1 p2 p4

↙ ↙
a2b0 p5

letting c0 := a0b0, c1 := a0b1 + a1b0 and generally

cn :=
n∑
j=0

ajbn−j,

we obtain the following corollary.

4.5 Corollary. (Cauchy Product of Series). Let
∑∞

j=0 aj and
∑∞

j=0 bj be two absolutely
convergent series and let

cn :=
n∑
j=0

ajbn−j, n ∈ N0.

Then
∑∞

n=0 cn converges absolutely and

(
∞∑
j=0

aj)(
∞∑
j=0

bj) =
∞∑
n=0

cn.
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We remark that Corollary 4.5 in general does not hold for series which are only con-
vergent, but not absolutely convergent.

In particular, let us return to the exponential series given by

exp(z) :=
∞∑
j=0

zj

j!
, z ∈ C.

From the Ratio Test Theorem 3.15 and Example 3.16 it follows, that exp(z) is abso-
lutely convergent for all z ∈ C. Further, we can now show the important functional
equation of the exponential series.

4.6 Corollary. (Functional Equation of exp). For z, w ∈ C

exp(z) exp(w) = exp(z + w).

Proof. For z, w ∈ C

exp(z) exp(w)
Def.
= (

∞∑
j=0

zj

j!
) (

∞∑
j=0

wj

j!
)

Cauchy Product 4.5
=

∞∑
n=0

n∑
j=0

zj

j!

wn−j

(n− j)!

=
∞∑
n=0

1

n!

n∑
j=0

n!

j!(n− j)!
zjwn−j

Bin.Thm.
=

∞∑
n=0

1

n!
(z + w)n

Def.
= exp(z + w).

�

4.7 Corollary.

a) For all z ∈ C holds: exp(−z) = 1
exp(z)

. In particular, exp(z) 6= 0 for all z ∈ C.

b) For all x ∈ R holds: exp(x) > 0.

c) For all q ∈ Z holds: exp(q) = eq.

d) For all q ∈ Q holds: exp(q) = eq.

The proof is left as an exercise. Finally, if we let

ez := exp(z), z ∈ C,

the above proposition d) implies that this definition extends the original definition of
eq for rational exponents q ∈ Q (compare remark II.1.14) to arbitrary exponents z ∈ C.
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5 Power Series

Power series have a long tradition in analysis. If one expresses a function f in the
form f(x) =

∑∞
n=0 an(x − x0)

n, then this is called the power series expansion of f
centered at x0. The general theory of such expansions will be presented in the course
on Complex Analysis (Funktionentheorie). Only then, the full importance of power
series will become visible.

Apart from these general properties, we are interested in power series because of
the fact that their convergence behaviour can be described by the so-called radius of
convergence. We start with the following definition.

5.1 Definition. Let (an)n ⊂ C be a sequence of complex numbers and z ∈ C. Then∑∞
n=0 anz

n is called a power series.

In this section we will analyse the question, for which z ∈ C the series above converges.

5.2 Definition. Let (an)n ⊂ C. Then

% :=
1

lim n
√
|an|

is called the radius of convergence of the series
∑∞

n=0 anz
n (we use the convention that

1
0

=∞ and 1
∞ = 0). This definition of the radius of convergence is also called Cauchy

Hadamard formula.

We will in the following call the set

U%(0) := {z ∈ C : |z| < %}

the disc of convergence of the series
∑∞

n=0 anz
n.

The following theorem is the main result of this section.

5.3 Theorem. Let
∑∞

n=0 anz
n be a power series with radius of convergence %. Then

for z ∈ C we have:

a) If |z| < %, then
∑∞

n=0 anz
n is absolutely convergent.

b) If |z| > %, then
∑∞

n=0 anz
n diverges.

c) If |z| = %, then in general no conclusion is possible.
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Proof. The proof is an application of the root test. We have n
√
|anzn| = |z| n

√
|an|.

Since
lim
n→∞

n
√
|anzn| = |z| lim

n→∞
n
√
|an| < 1⇔ |z| < % ,

the Root Test 3.14 implies the statement of the theorem, i.e. we have

|z| < % =⇒
∑∞

n=0 anz
n converges absolutely.

|z| > % =⇒
∑∞

n=0 anz
n diverges.

|z| = % =⇒ no conclusion possible.

�

5.4 Remark. In addition to the root test, one can also use the ratio test to determine
the radius of convergence. In particular, let

∑∞
n=0 anz

n be a power series for which

lim
n→∞

|an+1

an
| =: q.

exists. Then the power series
∑∞

n=0 anz
n has a radius of convergence % = 1

q
. To prove

this we note that ∣∣an+1z
n+1

anzn
∣∣→ q|z|, (n→∞)

holds. If 0 < q <∞, we choose z1, z2 ∈ C with |z1| < 1/q and |z2| > 1/q, and the ratio
test implies that the series

∑∞
n=0 anz

n
1 converges absolutely and the series

∑∞
n=0 anz

n
2

diverges. By Theorem 5.3, we therefore have % = 1/q. The cases q = 0 and q =∞ are
proved similarly.

5.5 Examples.
a) The exponential series

∑∞
n=0

zn

n!
has a radius of convergence of % =∞. Observe that

|an+1

an
| = | n!

(n+ 1)!
| = 1

n+ 1
→ 0,

so that Remark 5.4 now implies % = 1
q

=∞.

b) The series
∑∞

n=0 n
nzn has a radius of convergence % = 0, because

lim
n→∞

n
√
|an| = lim n

√
nn = lim n =∞.

and hence % = 1
∞ = 0.

c) The series
∑∞

n=0
n!
nn z

n has a radius of convergence % = e. Proof as exercise.
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Chapter III

Continuous Functions and the
Basics of Topology

1 Continuous Functions

We begin this chapter by considering continuous functions and their properties. The
notion of continuity that we use in the following is — like the notion of convergence
— essentially due to Cauchy, who defined the continuity of a function in his Cours
d’Analyse (1821) as follows:

En d’autres termes, la fonction f(x) restera continue par rapport à x entre
les limites données, si, entre ces limites, un accroissement infiniment petit de
la variable produit toujours un accroissement infiniment petit de la fonction
elle-même.

Cauchy still used the then-common concept of ‘infinitely small quantitiy’ (quantité in-
finiment petite), however this was replaced over the years by the ε-δ formulation which
is customary today. The latter was vitally influenced by Weierstraß.

We recall the definition of a function: Let X and Y be sets and f : X → Y a function,
i.e. a rule that assigns a unique (eindeutig) element y ∈ Y to every x ∈ X. The set
graph f := {(x, f(x)), x ∈ X} ⊂ X × Y is called the graph of f .

We start with the definition of continuity of a function which builds on the concept of
convergence.

1.1 Definition. (Continuity). A function f : D ⊂ K → K is called continuous
(stetig) at x0 ∈ D, if for every sequence (xn)n≥1 ⊂ D with lim

n→∞
xn = x0, it holds that

lim
n→∞

f(xn) = f(x0).

49
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In other words:
(xn) ⊂ D, xn → x0 =⇒ f(xn)→ f(x0).

The function f is called continuous in D, if f is continuous at all points x0 ∈ D.

The following theorem is a reformulation of the definition of continuity in ε-δ-language.

1.2 Theorem. (ε-δ criterion). A function f : D ⊂ K −→ K is continuous at x0 ∈ D
if and only if

(∀ ε > 0) (∃ δ > 0) (∀ x ∈ D, |x− x0| < δ) |f(x)− f(x0)| < ε.

Proof. ′′ =⇒′′: We assume that the assertion is false. Then there exists an ε0 > 0 such
that for all n ∈ N there exists an xn ∈ D with

|x0 − xn| < 1/n and |f(x0)− f(xn)| ≥ ε0.

Then lim
n→∞

xn = x0 but f(xn) 6→ f(x0) for n→∞. Contradiction!

′′ ⇐=′′: By assumption, for every ε > 0, there exists a δ > 0 with |x− x0| < δ =⇒
|f(x)− f(x0)| < ε. Let xn → x0. Then there exists an N0 ∈ N with |xn − x0| < δ for
all n ≥ N0. Therefore, |f(xn)− f(x0)| < ε for all n ≥ N0, i.e. lim f(xn) = f(x0).

�

1.3 Examples. a) Let f : R→ R be given by f(x) = ax+ b with a, b ∈ R. Then f
is continuous, since xn → x0 implies f(xn) = axn + b→ ax+ b = f(x).

b) The absolute value f : R→ R, x 7→ |x| is a continuous function.

c) The Heavyside function f : R→ R, defined by

f(x) =

{
0 x ≤ 0
1 x > 0

is continuous for all x ∈ R \ {0}, but not continuous in 0.

d) The function f , given by

f : R→ R, f(x) =


1, x ≥ 1,
1
n
, 1

n
≤ x < 1

n−1
, n = 2, 3, . . .

0, x ≤ 0,

is continuous at 0, since we can choose e.g. δ = ε because of |f(x)−f(0)| = |f(x)| ≤ |x|.
e) The Dirichlet Function (Dirichletsche Sprungfunktion), given by

f : R→ R, f(x) =

{
0, x ∈ Q
1, x ∈ R\Q
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is discontinuous at all points x ∈ R. Proof as an exercise.

f) Consider the function given by

f : R→ R, f(x) =

{
1
q
, x = p

q
∈ Q with q > 0 minimal

0, x ∈ R\Q

Then f is continuous at all points x0 ∈ R\Q but discontinuous at x0 ∈ Q! Proof as an
exercise.

g) Let f : D ⊂ R→ R. Assume there exists an L > 0 with

|f(x)− f(y)| ≤ L|x− y|, x, y ∈ D.

Then f is continuous. Indeed, choose for ε > 0 a δ such that δ := ε
L+1

. A function that
satisfies the above condition is called Lipschitz continuous and L is called the Lipschitz
constant of f .

h) Every Lipschitz-continuous function f is continuous. The converse does not hold.
Consider, for example, f : [0, 1] → R given by f(x) =

√
x. Then f is continuous, but

not Lipschitz-continuous (Exercise).

i) Let the functions f1, · · · f4 : C→ C be given by

f1(z) = |z|, f2(z) = z̄, f3(z) = Re z, f4(z) = Im z.

Then the functions f1, · · · f4 are Lipschitz-continuous with Lipschitz-constant 1, and
therefore continuous.

The above definition of continuity via sequences allows us to apply our knowledge
about convergent sequences to continuous functions. More precisely, we first define the
sum, the product and the quotient of two functions. For this, let f, g : D ⊂ K→ K be
two functions, and α, β ∈ K. If we define

αf + βg : D → K, (αf + βg)(x) := αf(x) + βg(x)
f · g : D → K, (f · g)(x) := f(x) · g(x)

f
g

: {x ∈ D : g(x) 6= 0} → K, (f
g
)(x) := f(x)

g(x)
,

we have the following theorem.

1.4 Theorem. Let f, g : D ⊂ K→ K be continuous at x0 ∈ D. Then the following
statements hold:

a) αf + βg : D → K is continuous at x0 ∈ D for all α, β ∈ K.

b) f · g : D → K is continuous at x0.
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c) If g(x0) 6= 0, then there exists δ > 0 with g(x) 6= 0 for x ∈ Uδ(x0) ∩ D and
f

g
: Uδ(x0) ∩D → K is continuous at x0.

Proof. The statements a) and b) follow from 1.1 and the calculation rules of convergent
sequences.
c) By assumption |g(x0)| =: γ > 0. Because g is continuous at x0 it follows that there
exists a δ > 0 such that

|g(x0)| − |g(x)| ≤ |g(x0)− g(x)| <
γ

2
, x ∈ Uδ(x0) ∩D.

Therefore, |g(x)| > γ
2

for x ∈ Uδ(x0) ∩D. The assertion then follows from the calcula-
tion rules of convergent sequences.

�

We now consider the composition of two functions f : Df ⊂ K→ K and g : Dg ⊂ K→
K with g(Dg) ⊂ Df . We define then f ◦ g : Dg → K as

(f ◦ g)(x) := f(g(x)).

The following theorem says that the composition of two continuous functions is again
continuous.

1.5 Theorem. Let f : Df ⊂ K → K and g : Dg ⊂ K → K be functions with
g(Dg) ⊂ Df . If g is continuous at x0 ∈ Dg and f is continuous at g(x0) ∈ Df , then
f ◦ g is continuous at x0.

Proof. Let (xn) ⊂ Dg be a sequence in Dg with lim
n→∞

xn = x0. By assumption g is

continuous at x0; therefore, g(xn) → g(x0). Then, because f is continuous at g(x0) it
follows that (f ◦ g)(xn) = f(g(xn))→ f(g(x)) = (f ◦ g)(x), i.e. f ◦ g is continuous at
x0.

�

1.6 Examples. a) Polynomials, i.e. functions of the form

x 7→ anx
n + an−1x

n−1 + · · ·+ a0, with aj ∈ K

for j = 0, 1, 2, . . . , n, are continuous.

b) If p and q are polynomials, then the function
p

q
given by

p

q
(z) :=

p(z)

q(z)
with D p

q
= {z ∈ K : q(z) 6= 0}

is also continuous. Such functions are called rational functions (rationale Funktionen).

c) The sign function (Signumfunktion) sign : C\{0} → C, sign (z) := z
|z| is continuous.
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Power series are the natural generalisation of polynomials. In the following theorem,
we show that power series are continuous functions inside their disc of convergence.

1.7 Theorem. Let
∑∞

n=0 anz
n be a power series with radius of convergence % > 0.

Then f : B%(0) := {z ∈ C : |z| < %} → C, z 7→
∑∞

n=0 anz
n is a continuous function.

Proof. Let z0 ∈ B%(0), ε > 0 and choose r > 0 such that |z0| < r < %. Theorem II, 5.3
implies that

∑∞
n=0 |an| rn converges, i.e. that N0 ∈ N exists with

∞∑
n=N0+1

|an| rn <
ε

4
.

Thus for z ∈ C with |z| ≤ r

|f(z)− f(z0)| ≤ |
N0∑
n=0

anz
n −

N0∑
n=0

anz
n
0 |+

∞∑
n=N0+1

|an||z|n +
∞∑

n=N0+1

|an||z0|n

= |p(z)− p(z0)|+ 2
∞∑

n=N0+1

|an|rn︸ ︷︷ ︸
<2· ε

4

with p(w) =
∑N0

n=0 anw
n. Since polynomials are continuous, there exists δ ∈ (0, r−|z0|)

with |p(z)− p(z0)| < ε
2

if |z − z0| < δ. Therefore |f(z)− f(z0)| < ε if |z − z0| < δ.
�

When applied to the exponential function, the above theorem implies that the expo-
nential function is continuous for all z ∈ C.

1.8 Corollary. (Exponential Function (Exponentialfunktion)) The exponential func-
tion

exp : C→ C, z 7→ exp(z)

is continuous.

Proof. By Example II.5.5a) the series
∑∞

n=0
zn

n!
has radius of convergence % = ∞.

Theorem 1.7 implies the assertion.
�

Many existence statements in analysis depend on the so-called intermediate value the-
orem. Bolzano was the first to realise the necessity of proving this apparently ‘self-
evident’ statement. From the modern point of view, the following theorem is a variation
of the completeness of R. In the following, we again set [a, b] := {x ∈ R : a ≤ x ≤ b}
for a, b ∈ R , a < b.
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1.9 Theorem. (Intermediate Value Theorem (Zwischenwertsatz)) Let a, b ∈ R with
a < b. Further, let f : [a, b]→ R be a continuous function with f(a) < 0 and f(b) > 0
(or f(a) > 0 and f(b) < 0). Then there exists an x0 ∈ [a, b] with f(x0) = 0.

Though the above theorem is intuitively obvious, caution is required: for example, let
D = {x ∈ Q : 1 ≤ x ≤ 2} and f : D → R be given by x 7→ x2−2. Then f(1) = −1 < 0
and f(2) = 2 > 0, but there exists no x0 ∈ D with f(x0) = 0.

Proof. Consider the set M := {x ∈ [a, b] : f(x) ≤ 0}. Then a ∈ M and hence
M 6= ∅. Additionally M is bounded from above by b. The completeness axiom implies
x0 := supM exists. Now we show that f(x0) = 0.

We assume that f(x0) < 0. By hypothesis, f is continuous; thus for ε := −f(x0)
2

> 0,
there exists a δ > 0 with δ < b− x0 and

f(x)− f(x0) < ε, whenever x ∈ (x0 − δ, x0 + δ) ∩ [a, b].

Therefore, f(x) < f(x0)
2

< 0 for all x ∈ (x0 − δ, x0 + δ) ∩ [a, b] and, therefore,

(x0 − δ, x0 + δ) ∩ [a, b] ⊂M.

Then x0 + δ
2
∈M in contradiction to the definition of x0.

We now assume that f(x0) > 0. Analogously to the above, the hypothesis f being

continuous implies that to ε := f(x0)
2

> 0 there exists a δ > 0 with δ < x0 − a and

f(x0)− f(x) < ε x ∈ (x0 − δ, x0 + δ) ∩ [a, b].

Therefore 0 < f(x0)
2

< f(x) for all x ∈ (x0 − δ, x0 + δ) ∩ [a, b] and, therefore,

(x0 − δ, x0 + δ) ∩ [a, b] ∩M = ∅.

This implies that x0 − δ/2 is an upper bound of M in contradiction to the definition
of x0. Summarizing, we have that f(x0) = 0.

�

1.10 Remarks.
a) Let f : [a, b]→ R be a continuous function. Then f takes every value between f(a)
and f(b). In other words, let (without loss of generality) f(a) < c < f(b). Then there
exists an x0 ∈ [a, b] with f(x0) = c. Proof as exercise.

b) Every polynomial of odd degree with real coefficients has at least one root.

c) For all y > 0 there exists exactly one x ∈ R with exp(x) = y. We denote x by

x := log y

and call it the natural logarithm (natürlichen Logarithmus) of y.
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In order to see this property, observe that for n ∈ N,

exp(n) = 1 + n+
n2

2!
+ · · · ≥ 1 + n→∞.

The functional equation of the exponential function implies that exp(−n) = 1
exp(n)

→
0. Thus, there exists an N0 ∈ N with exp(−N0) < y < exp(N0). Because exp :
[−N0, N0] → R is continuous (see Corollary 1.8), by the intermediate value theorem,
there exists an x ∈ [−N0, N0] with exp(x) = y.
In order to prove the uniqueness, we assume that there exists a z, x < z, with exp x =
y = exp z. The functional equation of the exponential function then implies that
exp(z) = exp(h) exp(x) for h = z − x. Since h > 0 and

exph = 1 + h+ . . . > 1

we get exp(x) < exp(z). This is a contradiction.

The function log : (0,∞)→ R is called logarithm function.

As a further application of the intermediate value theorem, we now consider the image
of an interval under a continuous function. Here the following subsets of R are called
intervals (Intervalle):

(a, b) := {x ∈ R : a < x < b}
[a, b) := {x ∈ R : a ≤ x < b}
(a, b] := {x ∈ R : a < x ≤ b}
[a, b] := {x ∈ R : a ≤ x ≤ b}

(−∞, b) := {x ∈ R : x < b}
(−∞, b] := {x ∈ R : x ≤ b}
(a,∞) := {x ∈ R : x > a}
[a,∞) := {x ∈ R : x ≥ a}

(−∞,∞) := R

1.11 Theorem. (Continuous Images of Intervals) Let I be an interval and f : I → R
be a continuous function. Then f(I) is an interval.

Proof. First let I = [a, b] be a closed and bounded interval.

We first show that f(I) is bounded: Assume f(I) is not bounded. Then there exists
a sequence (yn)n of elements of f(I) such that |yn| > n for all n ∈ N. On the other
hand, there exists a sequence (xn)n in I with f(xn) = yn for all n ∈ N. The sequence
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(xn)n is bounded since I is bounded by assumption. By Bolzano-Weierstraß, (xn)n has

therefore a convergent subsequence (xnk
)k with xnk

k→∞−→ x0 ∈ [a, b]. By the continuity

of f , we have f(xnk
)
k→∞−→ f(x0). On the other hand, we have |f(xnk

)| > nk, and this
is a contradiction.

Next we show that f(I) is closed: Since f(I) is bounded, inf f(I) and sup f(I) exist
(as finite numbers). We show that infimum and supremum are in fact minimum and
maximum, respectively, and we carry out the proof for the maximum.
By the characterisation of the supremum we know that there exists a sequence (xn)n
in I such that f(xn)

n→∞−→ sup f(I), and again by Bolzano-Weierstraß, this sequence
has a convergent subsequence (xnk

)k, and its limit p is contained in I, because we

assumed I to be closed. By continuity, we have f(xnk
)
k→∞−→ f(p) and because the limit

of a sequence is unique, this implies f(p) = sup f(I), whence sup f(I) is an element of
f(I). Analogously, we can show that there exists q ∈ [a, b] with f(q) = inf f(I).

By the intermediate value theorem, we can infer that f takes any value between f(q)
and f(p) on I, hence f(I) = [f(p), f(q)] is an interval.

Next let I be a bounded and open interval, i.e. I is of the form I = (a, b). Then we
can express I as the following infinite union.

I =
⋃
n∈N

1/n<(b−a)/2

[a+ 1/n, b− 1/n]

By the argument above, each f([a+ 1/n, b− 1/n]) is an interval, and hence

f(
⋃
n∈N

1/n<(b−a)/2

[a+ 1/n, b− 1/n])
see ex. T 4.1

=
⋃
n∈N

1/n<(b−a)/2

f([a+ 1/n, b− 1/n])

is an ascending union of intervals, which is again an interval.

If the interval is of the form [a, b) or (a, b] or unbounded in one or both directions,
we can apply essentially the same argument and express the interval as an ascending
union of closed and bounded intervals.
Below we give a list of possible representations for the remaining forms of I.

[a, b) =
⋃

[a, b− 1/n] [a,∞) =
⋃

[a, n] (−∞, b] =
⋃

(−n, b]
(a, b] =

⋃
[a+ 1/n, b] (a,∞) =

⋃
[a+ 1/n, n] (−∞, b) =

⋃
[−n, b− 1/n]

(−∞,∞) =
⋃

[−n, n]
�

Our next task is to check the continuity of the inverse function of a given continuous
function (so long as it exists). We introduce the following concepts:
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1.12 Definition. A function f : D ⊂ R→ R is called
(monotone) increasing, if x, y ∈ D, x < y ⇒ f(x) ≤ f(y)
strictly (monotone) increasing, if x, y ∈ D, x < y ⇒ f(x) < f(y)
(monotone) decreasing, if x, y ∈ D, x < y ⇒ f(x) ≥ f(y)
strictly (monotone) decreasing, if x, y ∈ D, x < y ⇒ f(x) > f(y)
monotone, if f is increasing or decreasing.
strictly monotone, if f is strictly increasing or strictly decreasing.

At this point we recall the definition of injectivity: A function f : D ⊂ R→ R is called
injective (injektiv), if f(x1) = f(x2)⇒ x1 = x2. A strictly monotone function f : D ⊂
R → R is injective and it is possible to define the inverse function (Umkehrfunktion)
f−1 : f(D)→ D via the following:

f−1 : f(D)→ D, f−1(y) = x :⇔ y = f(x).

The graph of f−1 is simply the reflection of the graph of f around the line x = y, i.e.

graph(f−1) = {(y, f−1(y)) : y ∈ f−1(D)} = {(f(x), x) : x ∈ D}.

We now consider the question whether or not the inverse function of a continuous
function is also continuous.

1.13 Theorem. Let I be an interval and f : I → R be a continuous, strictly
monotone function. Then the inverse function f−1 : f(I)→ R is continuous.

Proof. W.l.o.g. let f be strictly increasing. We divide the proof into three steps:

1) By Theorem 1.11, f(I) =: J is an interval. We set g := f−1 : J → I.

2) The function g is strictly increasing: If s1 < s2 in J then g(s1) < g(s2). Otherwise
g(s1) ≥ g(s2) and the monotonicity of f would give

s1 = f(g(s1)) ≥ f(g(s2)) = s2 – a contradiction.

3) The inverse function g is continuous:

Consider first the case of a closed bounded interval I := [a, b]. Then by the proof
of Theorem 1.11, f(I) =: J is a closed bounded interval. Now assume that g is
discontinuous at s0 ∈ J . Then there exists an ε0 > 0 and a sequence (sn)n ⊂ J with

|sn − s0| <
1

n
and |g(sn)− g(s0)| ≥ ε0 for all n ∈ N.
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Set tn := g(sn) ∈ [a, b]. By the theorem of Bolzano-Weierstraß the sequence (tn)n con-
tains a convergent subsequence (tnk

)k∈N with limit t0 ∈ [a, b]. Because f is continuous,

it follows that f(tnk
)
k→∞−→ f(t0).

On the other hand, f(tnk
) = snk

k→∞−→ s0 and the uniqueness of the limit implies that
s0 = f(t0). Therefore,

g(snk
) = tnk

k→∞−→ t0 = g(s0)

in contradiction to the above property of the sequence (g(sn))n.

Next let I = (a, b) be an open bounded interval and s0 ∈ J arbitrary. Then to
g(s0) =: t0 ∈ (a, b) one can find a closed bounded interval [c, d] ⊂ (a, b) with t0 ∈ (c, d).
Thus, by the [a, b]-case, the continuity of g in s0 , hence on J. As in the proof of
Theorem 1.11 the remaining cases of intervals can be reduced to the above two cases.

�

We conclude this chapter with some examples.

1.14 Examples. a) For n ∈ N, the n-th root function

f : [0,∞)→ [0,∞), x 7→ n
√
x

is continuous and strictly increasing. To see this, consider the function

g : [0,∞)→ [0,∞), t 7→ tn.

Then g is continuous and strictly monotone, because for 0 ≤ s < t, we have

g(t)− g(s) = tn − sn = tn(1− (
s

t
)n) > 0.

The claim then follows from 1.13.

b) The exponential function exp : R→ R is strictly increasing. We repeat the argument
from Remark 1.10 c). Because we have ex+h = ehex for all x ∈ R and h > 0, the strict
monotonicity of the exponential function follows from the estimate

eh = 1 + h+
h2

2!
+ . . . > 1, h > 0.

Furthermore, the exponential function exp : R→ (0,∞) is continuous by Corollary 1.8.
The above theorem about inverse functions then states that the logarithm function
log : (0,∞)→ R, x 7→ log x ,which was defined in 1.10 c) as the inverse function of the
exponential function, is continuous as well.

c) For x > 0 and α ∈ R, we define the general power by

xα := exp(α log x).
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Then, the two functions

fx : R→ R, fx(α) := xα for fixed x > 0 and
gα : (0,∞)→ R, gα(x) := xα for fixed α ∈ R

are continuous.
At this point, we note that the above definition extends the previous definition of
powers with rational exponents from Remark II.1.14 to arbitrary exponents α ∈ R.
To see this, for given x > 0 and α = p

q
∈ Q , p ∈ Z, q ∈ N, we deduce from the

uniqueness of the root that

exp(
p

q
log x) =

(
exp(

log x

q
)

)p
=
(

q
√

exp(log x)
)p

= ( q
√
x)p.

d) If f : D ⊆ R→ R is continuous and strictly monotone, then f−1 is not continuous in
general if D is not an interval. Consider for example the function f : D = [0, 1) ∪ {2},
given by

f(x) =

{
x, for x ∈ [0, 1)
1, for x = 2.

Then f is continuous and strictly monotone, but f−1 : f(D) = [0, 1]→ R, given by

f−1(y) =

{
y, for y ∈ [0, 1)
2, for y = 1

is not continuous at y = 1.
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2 Basics of Topology

We begin this section with the concept of vector spaces, which play an important role
in modern analysis. Throughout the section we let the scalar field be K = R or K = C.

We start by recalling the definition of a vector space, as known from linear algebra.

2.1 Definition. A vector space (Vektorraum) over K, or a K-VS is a triple (V,+, ·)
consisting of a set V 6= ∅, an addition + : V × V → V , (u, v) 7→ u + v, and a
multiplication by scalars · : K×V → V, (λ, v) 7→ λ · v, are defined in accordance with
the following rules:

(VR1) (V,+) is an abelian group

(VR2) Distributivity:

λ(v + w) = λv + λw, (λ+ µ)v = λv + µv, λ, µ ∈ K, v, w ∈ V

(VR3) λ · (µv) = (λµ) · v, 1 · v = v, λ, µ ∈ K, v ∈ V

The vector space is called real if K = R, and complex if K = C .

The elements of V are called vectors (Vektoren), while the elements of K are called
scalars (Skalare). More information about the concept of vector spaces will be given
in the Linear Algebra lectures.

2.2 Examples.

a) Let n ∈ N, x = (x1, x2, · · · , xn) ∈ Kn and y = (y1, y2, . . . , yn) ∈ Kn. Then Kn is a
K-VS equipped with

x+ y := (x1 + y1, · · · , xn + yn)

λ · x := (λx1, · · · , λxn), λ ∈ K.

In particular, Rn and Cn are vector spaces.

b) Let X be a set. Then V X := {f : X −→ V : f is a map} is a vector space with

(f + g)(x) : = f(x) + g(x), x ∈ X
(λf)(x) : = λf(x), x ∈ X, λ ∈ K

c) The set c0 := {(xn)n≥1 ⊂ K : (xn) is a null sequence} is a K-vector space with
coordinate-wise addition and scalar multiplication

(xn)n + (yn)n : = (x1 + y1, x2 + y2, · · · ) = (xn + yn)n ,

λ(xn)n : = (λx1, λx2, · · · ) = (λxn)n .

This follows from the calculation rules for convergent sequences.



2. BASICS OF TOPOLOGY 61

We now want to equip the vector space Rn with a Euclidean structure and, therefore,
introduce the idea of a distance between two elements x, y ∈ Rn. We call

|x− y| := d(x, y) :=
√

(x1 − y1)2 + · · ·+ (xn − yn)2

the Euclidean distance (euklidischer Abstand) between x and y. In particular, the

Euclidean distance of x to the origin is |x| = d(x, 0) =

√
n∑
i=1

x2
i . We sometimes write

‖x− y‖ instead of |x− y|. We call

Br(x) := {y ∈ Rn : d(y, x) = |y − x| < r} , x ∈ Rn, r > 0,

the open ball (offene Kugel) with center x and radius r with respect to d.

In the following, we transfer the concept of convergence for sequences and series of real
numbers, which we introduced earlier, to sequences and series in the Euclidean space
Rn. For this, it proves useful to introduce some basic topological concepts for subsets
of Rn. These concepts are mostly due to Felix Hausdorff.

2.3 Definition. a) A subset U ⊂ Rn is called a neighborhood (Umgebung) of x ∈ Rn,
if there exists an ε > 0 with Bε(x) ⊂ U . The set Bε(x) is also called an ε-neighborhood
of x.
b) A set A ⊂ Rn is called open (offen), if for every x ∈ A there exists an ε > 0 such
that Bε(x) ⊂ A.

Examples. Let a, b ∈ R with a < b. Then:
a) The set U = (a, b) is open. In fact, let x ∈ (a, b); set ε := min(|a− x|, |b− x|), then
Bε(x) ⊂ (a, b).

b) The intervals (a,∞) and (−∞, a) are both open.

c) The inverval [a, b] is not open, since Bε(a) 6⊂ [a, b] for every ε > 0.

d) Br(x) is an open subset of Rn. (Exercise).

2.4 Definition. A set A ⊂ Rn is called closed (abgeschlossen), if Rn\A is open in
Rn. Here, Rn\A := {x ∈ Rn : x 6∈ A}.

Examples. Let a, b ∈ R with a < b. Then:

a) (a, b) is not closed in R,

b) [a, b] is closed in R,

c) [0, 1) is not open and not closed in R,

d) Q given by Q := {(x1, · · ·xn) ∈ Rn : ai ≤ xi ≤ bi, 1 ≤ i ≤ n} where ai, bi ∈ R with
ai ≤ bi is closed in Rn.
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In the following two theorems, we examine unions and intersections of open respectively
closed sets.

2.5 Theorem. The following statements hold:

a) The empty set ∅ and also Rn are open in Rn. (Thus the property open is not a
negation of the property closed.)
b) Let Oα ⊂ Rn, α ∈ I be open sets. Then

⋃
α∈I

Oα is open in Rn, i.e. a union of

arbitrarily many open sets is open.

c) Let U1, U2 · · ·UN be open sets. Then
N⋂
i=1

Ui is open in Rn, i.e. a finite intersection

of open sets is open.

Proof as exercise. The example of the open intervals (− 1
n
, 1 + 1

n
) = In with [0, 1] =

∞⋂
n=1

In shows that in general, arbitrary intersections of open sets are not open.

2.6 Theorem. (analogous to Theorem 2.5)
a) The empty set ∅ and Rn are closed.
b) Intersections of arbitrarily many closed sets are closed.
c) Finite unions of closed sets are closed.

The proof follows from Theorem 2.5 and de Morgan’s Rule. (Exercise).

Observe that the statement from Theorem 2.6 c) does not hold for arbitrary unions of

closed sets. In fact, B 1
n
(0)C is closed for all n, but

∞⋃
n=1

[B 1
n
(0)c] = Rn \{0} is not closed.

In the following, we continue to introduce basic topological concepts.

2.7 Definition. a) Let A ⊂ Rn and x ∈ Rn. Then x is called a boundary point
(Randpunkt) of A, if every neighborhood U of x contains both a point from A and
from Rn\A.

b) The set
∂A := {x ∈ Rn : x is a boundary point of A}

is called the boundary (Rand) of A and

Å := A\∂A

is called the interior (Inneres) of A. An element a ∈ Å is called an interior point
(innerer Punkt) of A.
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c) Additionally, x ∈ Rn is called an accumulation point (Häufungspunkt) of A ⊂ Rn, if
every neighborhood of x contains infinitely many elements of A.

d) We call

A := {x ∈ Rn : x ∈ A or x is an accumulation point of A}

the closure (Abschluß) of A.

e) Finally, A ⊂ Rn is called bounded (beschränkt), if there exists an x ∈ Rn and an
r > 0 with A ⊂ Br(x).

As an example, we consider the closed unit ball A = {x ∈ Rn : |x| ≤ 1}. Its interior
is the open unit ball Å = {x ∈ Rn : |x| < 1}, and its boundary is the unit sphere
∂A = {x ∈ Rn : |x| = 1}.

The following properties of open respectively closed sets often prove useful.

2.8 Remarks. (Interior, Boundary, Closure) Let M ⊂ Rn. Then:
a)

M̊ =
⋃

O⊆M,O open

is open. i.e. M̊ is the largest open set that is contained in M .

b)

M = M̊ ∪ ∂M =
⋂

M⊆A,A closed

A,

i.e. M is the smallest closed set in which M is contained.

c) ∂M = M
⋂

Rn\M is closed.

2.9 Theorem. (Hausdorff’s Separation Axiom) Let x, y ∈ Rn with x 6= y. Then
there exist neighborhoods Ux of x and Uy of y with Ux ∩ Uy = ∅.

The proof is not difficult: set Ux := Uε(x), Uy := Uε(y) with ε := |x−y|
2

. We as-
sume that a z ∈ Rn exists with z ∈ Ux ∩ Uy. However, we then have 2ε = |x − y| ≤
|x− z|︸ ︷︷ ︸

<ε

+ |z − y|︸ ︷︷ ︸
<ε

< 2ε. Contradiction! �

After the analysis of the convergence of real or complex sequences (aj)j in Chapter 2,
we now consider the convergence of sequences (aj)j ⊂ Rn.
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2.10 Definition. Let (aj)j∈N ⊂ Rn be a sequence. Then (aj)j is called convergent to
(konvergent gegen) a ∈ Rn, if for each neighborhood U of a there exists an N0 ∈ N
with aj ∈ U for all j ≥ N0. In this case, we write lim

j→∞
aj = a.

The following result says that a sequence in Rn is convergent if an only if each of its
coordinate sequences converges.

2.11 Lemma. A sequence (aj)j∈N ⊂ Rn converges to a = (a1, a2, · · · , an) ∈ Rn if and
only if

lim
j→∞

al,j = al, l = 1, · · ·n,

i.e. if and only if the l-th coordinate of aj converges to al for all l = 1, · · ·n.

Proof. =⇒: By assumption, there exists to each ε > 0 an N0 ∈ N with ‖aj − a‖ =

(
n∑
l=1

|al,j − al|2)
1
2 < ε for all j ≥ N0. Therefore |aj,l − al| ≤ ‖aj − a‖ < ε for all

l = 1, . . . , n, j ≥ N0.
⇐=: For ε > 0 there exists an Nl ∈ N with |al,j − al| < ε√

n
for all j ≥ Nl. Thus, for

j ≥ N0 := max(N1, · · · , Nn)

‖aj − a‖ = (
n∑
l=1

|al,j − al|2)
1
2 < (

ε2

n
n)

1
2 = ε.

�

2.12 Definition. A sequence (aj)j ⊂ Rn is called a Cauchy sequence (Cauchyfolge), if
for all ε > 0 there exists an N0 ∈ N with

‖an − am‖ < ε, n,m ≥ N.

The following theorem about the convergence of Cauchy sequences in Rn again
relies ultimately on the the completeness of the real numbers.

2.13 Theorem. In Rn every Cauchy sequence is convergent.

Proof. Let (aj)j ⊂ Rn with aj = (a1,j, a2,j, · · · an,j), j ∈ N, be a Cauchy sequence in
Rn. Since

|aν,` − aν,m| ≤ (
n∑
ν=1

|aν,` − aν,m|2)
1
2 , ν = 1, · · ·n ,

every coordinate (aν,j)j≥1 of (aj)j is a Cauchy sequence in R. Because R is complete,
(aν,j)j≥1 converges for each ν = 1, · · · , n. Lemma 2.11 now implies the assertion.
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�

The following theorem describes closedness of a set in terms of convergent sequences.

2.14 Theorem. (Characterization of closed sets via sequences) Let A ⊂ Rn. Then
A is closed if and only if for every sequence (aj)j ⊂ A with lim

j→∞
aj = a ∈ Rn it holds

that a ∈ A.

Proof. =⇒: Let aj ∈ A for all j ∈ N with lim
j→∞

aj = a ∈ Rn. We assume that a 6∈ A,
i.e. that a ∈ Rn\A. Because Ac := Rn\A is open, Ac is a neighborhood of a. By the
definition of convergence (see 2.10) there exists an N0 ∈ N with aj ∈ Ac for all j ≥ N0.
Contradiction!
⇐=: We again assume that the assertion is false, i.e. that Ac is not open. Then there
exists an a ∈ Rn\A such that for all ε > 0 the neighborhood Uε(a) is not contained in
Rn\A, i.e. Uε(a)∩A 6= ∅. For j ∈ N now choose aj ∈ U 1

j
(a)∩A. Then lim

j→∞
aj = a 6∈ A.

Contradiction!
�

For a set M ⊂ Rn we define its diameter diam M as

diam M := sup{‖x− y‖ : x, y ∈M}.

Then we have the following theorem.

2.15 Theorem. Let (Aj)j≥0 be a sequence of non-empty, closed subsets of Rn with

A0 ⊃ A1 ⊃ A2 ⊃ · · ·

and lim
j→∞

diam (Aj) = 0. Then there exists exactly one x ∈ Rn with x ∈
∞⋂
j=0

Aj.

Proof. We begin with the existence of an element x with the desired properties. Here,
choose for each j ∈ N an xj ∈ Aj. Then for given ε > 0 there exists an N ∈ N with

||xj − xk|| ≤ diam (AN) < ε, j, k ≥ N.

Therefore, (xj)j is a Cauchy sequence in Rn and Theorem 2.13 implies that (xj)j
converges to some x ∈ Rn. Because xj ∈ Ak for j ≥ k and Ak is closed, it follows from
Theorem 2.14 that x ∈ Ak for all k ∈ N. The uniqueness is clear.

�

Finally, we extend the definition of continuity of real functions of one varible to those
of n real variables.
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2.16 Definition. Let M ⊂ Rn and f : M → R be a function. Then f is called
continuous (stetig) at x0 ∈ M , if for every sequence (xj)j ⊂ M with lim

j→∞
xj = x0,

there holds that lim
j→∞

f(xj) = f(x0). If f is continuous for all x0 ∈M , then f is called

continuous.

Analogously to Theorem 1.2 one shows: f : M → R is continuous at x0 ∈M if to each
ε > 0 there exists a δ > 0 (which depends upon ε and x0) such that

|f(x)− f(x0)| < ε for all x ∈M, ‖x− x0‖ < δ.

If f : Rn → R we can thus reformulate its continuity property at x0 ∈ Rn in the form:
f : Rn → R is continuous at x0 ∈ Rn if and only if for every neighborhood V of f(x0)
in R (in particular for Vε(f(x0) ⊂ R) there exists a neighborhood U of x0 ∈ Rn (in
particular Uδ(x0) ⊂ Rn) with f(U) ⊂ V .

For the following theorem, which is a fundamental characterization of continuous func-
tions, we need the notion of a pre-image. Let f : Rn → R and B ⊂ R . Then

f−1(B) := {x ∈ Rn : f(x) ∈ B}

is called pre-image of B w.r.t. f or inverse image of B under the function f.

2.17 Theorem. For a function f : Rn → R the following are equivalent:

i) f is continuous.

ii) f−1(O) is open in Rn for every open set O in R, i.e. pre-images of open sets are
open.

iii) f−1(A) is closed in Rn for every closed set A in R, i.e. pre-images of closed sets
are closed.

Proof. i) ⇒ ii): Let O ⊂ R be open. If f−1(O) = ∅, then the assertion follows
from Theorem 2.5 a). Let f−1(O) 6= ∅. Because f is continuous, there exists to each
x ∈ f−1(O) an open neighborhood Ux ⊂ Rn of x with f(Ux) ⊂ O, i.e. x ∈ Ux ⊂ f−1(O)
for all x ∈ f−1(O). Therefore ⋃

x∈f−1(O)

Ux = f−1(O),

and then, by Theorem 2.5, f−1(O) is open as a union of open sets.
ii) ⇔ iii): A ⊂ R is closed if and only if Ac is open in R. Since f−1(Ac) = (f−1(A))c

we have f−1(A) is closed if and only if (f−1(A))c is open in Rn.
ii) ⇒ i): Let x ∈ Rn and V be an open neighborhood of f(x) in R. By the definition
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of an open neighborhood, there exists an ε > 0 such that Vε(f(x)) ⊂ V. Then by
assumption U := f−1(Vε(f(x))) is open in Rn. Since x ∈ U there exists some δ > 0
such that Uδ(x) ⊂ U , i.e., f(Uδ(x)) ⊂ Vε(f(x)) and f is continuous at x ∈ Rn.

�

Before we now consider examples with the aim to exemplify the statement of the
above theorem, we remark that Theorem 2.17 implies that a function f : Rn → R is
continuous iff inverse images of open sets are open, or alternatively iff inverse images
of closed sets are closed.

2.18 Examples.
a) Let f : Rn → R be a continuous function and y ∈ R. Then f−1(y) is closed in Rn.
This is obvious, since {y} is closed in R.

b) Let f : Rn → R be a continuous function. Then

{x ∈ Rn : f(x) ≤ r} is closed and {x ∈ Rn : f(x) < r} is open.

This is clear, since {x ∈ Rn : f(x) ≤ r} = f−1((−∞, r]) and (−∞, r] is closed, resp.
{x ∈ Rn : f(x) < r} = f−1((−∞, r)) and (−∞, r) is open.

c) The closed n-dimensional unit cube

Q := {x ∈ Rn : 0 ≤ xj ≤ 1, 1 ≤ j ≤ n}

is closed in Rn. In fact, the projection pj : Rn → R, (x1 · · ·xn) 7→ xj on the j-th
coordinate is continuous. Because

Q =
n⋂
j=1

({x ∈ Rn : pj(x) ≤ 1}︸ ︷︷ ︸
closed by (iii)

∩{x ∈ Rn : pj(x) ≥ 0}︸ ︷︷ ︸
closed by (iii)

)

and finite intersections of closed sets are closed (Satz 2.5), the assertion follows from
Theorem 2.17.
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d) Continuous images of open sets are, in general, not open:

Consider the interval O = (−1, 1) and the continuous function f : R → R, x 7→ x2.
Then f(O) = [0, 1) which is not open in R.

Continuous images of closed sets are, in general, not closed:

Consider the set A := {(x, y) ∈ R2 : xy = 1} ⊂ R2 and the continuous function
f : R2 → R, (x, y) 7→ xy. Then A = f−1({1}) and by statment (iii) A is closed in R2.
Now p1 : R2 → R, (x, y) 7→ x is continuous, but p1(A) = R \ {0} is not closed.
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3 Compactness

The notion of compactness is of central importance in analysis. In particular, impor-
tant existence statements of analysis depend on properties of continuous functions on
compact sets. Exemplary, we mention the fact that a real-valued function on a compact
set attains a minimum and a maximum value.

We define the concept of compactness of a subset of Rn by means of open covers
and we show that this definition is equivalent to the later introduced ‘compactness by
sequences’. Furthermore, the Theorem of Heine-Borel states that a subset of Rn is
compact iff it is closed and bounded.

The reason to introduce compactness via open covers is that this concept can be
straightforwardly generalized to normed and metric spaces to be defined in Analysis
II, while the characterisation of Heine-Borel only works in finite dimensions.

In this section, K is always a compact subset of Rn. We start with the definitions
of ‘open cover’ and compactness.

3.1 Definition.

a) Let I be an index set. Then (Oi)i∈I is called an open cover (offene Überdeckung)
of K, if Oi are open sets for all i ∈ I and

K ⊂
⋃
i∈I

Oi .

b) The set K ⊂ Rn is called compact (kompakt), if every open cover (Oi)i∈I of K
contains a finite subcover, i.e. if there exist i1, · · · , iN with

K ⊂
N⋃
l=1

Oil .

3.2 Examples.
a) The set of real numbers R is not compact, because R ⊆

⋃
n∈N

(−n, n).

b) The interval (0, 1] is not compact in R, because (0, 1] ⊆
⋃
j≥1

(1
j
, 2).

c) Let (aj) be a convergent sequence in Rn with lim
j→∞

aj = a. Then

K := {aj, j ∈ N} ∪ {a}

is compact. To see this, let (Oi)i∈I be an open cover of K. Then there exists j ∈ I
with a ∈ Oj. Since Oj is a neighborhood of a, there exists N0 ∈ N with xn ∈ Oj for all
n ≥ N0. Choose now i0, · · · , iN0 such that xn ∈ Oin , n = 1 · · ·N0. Then

K ⊂ (

N0⋃
n=0

Oin) ∪Oj.
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d) The statement of c) does not hold in general, if we remove a from K. To realize
this, consider the sequence (1/n)n and let

M = {1
j

: j ∈ N} ⊂ R,

O1 = (
1

2
, 2), and

Oj = (
1

j + 1
,

1

j − 1
) for j ≥ 2.

Then we have

M ⊂
⋃
j≥1

Oj

and each Oj contains exactly one element of M . Therefore, the open cover (Oj)j∈N
does not contain a finite subcover.

3.3 Theorem. Let K ⊂ Rn be a compact set. Then K is closed and bounded.

Proof. First we show that K is bounded: Let x ∈ Rn be arbitrary, then fixed. Then

Rn =
∞⋃
k=1

Bk(x) and since K is assumed to be compact, there exists N ∈ N with

K ⊂
N⋃
j=1

Bkj
(x).

For R := max{k1, · · · , kN}, we have K ⊂ BR(x), therefore, K is bounded.

Next we show that K is closed or, equivalently, that Rn\K is open: To this end
consider x ∈ Rn\K and set Un := {y ∈ Rn : ||y − x|| > 1

n
}. Then Un is open and

K ⊂ Rn\{x} =
∞⋃
n=1

Un.

Since K is compact, there exists N ∈ N with K ⊂
N⋃
j=1

Unj
. For R := max{n1, · · · , nN},

we have B 1
R
(x) ⊂ Rn\K, i.e. Rn\K is open, and therefore K is closed.

�

3.4 Lemma. Let A ⊂ K ⊂ Rn, where A is closed and K is compact. Then A is
compact.
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Proof. Let (Oi)i∈I be an open cover of A. By assumption Rn\A is open and

K ⊂ Rn =
⋃
i∈I

Oi ∪ Rn\A.

Since K is compact, there exists a finite subcover of K, i.e., there exist i1, · · · , iN ∈ I
with

K ⊂ (Oi1 ∪ · · ·OiN ) ∪ Rn\A.

Therefore A ⊂ Oi1 ∪ · · ·OiN .
�

3.5 Theorem. (Heine-Borel)
A set K ⊂ Rn is compact if and only if K is closed and bounded.

Proof. =⇒: This is Theorem 3.3.

⇐=: Conversely, let K be closed and bounded. Then K is contained in a cuboid of
the form:

Q = {(x1, · · · , xn) ∈ Rn : al ≤ xl ≤ bl , l = 1, . . . , n}

with al, bl ∈ R, al ≤ bl. If we can show that Q is compact, the assertion follows from
Lemma 3.4. This, however, is exactly the statement of the following lemma.

3.6 Lemma. Let Q ⊂ Rn be as above. Then Q is compact.

Proof. Let (Oi)i∈I be an open cover of Q. We assume that there does not exist an open
subcover of Q. Now we construct a sequence of closed sub-cuboids

Q0 ⊃ Q1 ⊃ Q2 ⊃ . . .

with the properties

i) each Qm has no finite subcover

ii) diam (Qm) = 2−m diam (Q)

by the following procedure: Set Q0 = Q and assume Qm is already constructed. Then
Qm = I1 × I2 × · · · × In where Il ⊂ R are closed intervals. Now halve Il , Il = I1

l ∪ I2
l

and set
Qs1,...,sn
m := Is11 × Is22 × · · · × Isn

n , si = 1, 2.

Then
Qm =

⋃
s1,...,sn

Qs1,...,sn
m .

Since Qm does not have a finite subcover and is represented by a finite union of sub-
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cuboids, there must exist at least one sub-cuboidQs1···sn
m which has not a finite subcover.

We denote this by Qm+1. Then

diam(Qm+1) =
1

2
diam(Qm) = 2−m−1 diam(Q)

and therefore Qm+1 has properties i) and ii). By Theorem 2.15 there exists exactly one
a with a ∈

⋂
m≥1

Qm. Additionally, since (Oi)i∈I is a cover of Q, a is an element of Oi0

for some i0. Since Oi0 is open there exists some ε > 0 such that Bε(a) ⊂ Oi0 . Choose
now m so big that diam Qm < ε

2
. Since a ∈ Qm, we have

Qm ⊂ Bε(a) ⊂ Oi0

in contradiction to property i).
�

The notion of compactness, in particular the Theorem of Heine-Borel, has many impor-
tant consequences in analysis. First of all, we consider basic properties of continuous
images of compact sets.

3.7 Theorem. Let f : D ⊂ Rn → R be a continuous map. If K ⊂ D is compact,
then f(K) ⊂ R is also compact. In other words: Continuous images of compact sets
are compact.

Proof. Let (Oi)i∈I be an open cover of f(K). For any point x ∈ K we have f(x) ∈ Oi0

for some i0 ∈ I. Since Oi0 is open, there exists an open interval BR
ε (f(x)) ⊂ Oi0 , where

BR
ε (f(x)) := {s ∈ R : |s−f(x)| < ε}, for some ε = ε(f(x)) > 0. By the continuity of f

there exists some δ = δ(ε, x) > 0 such that f(BRn

δ (x)∩D) ⊂ BR
ε (f(x)); here BRn

δ (x) :=
{y ∈ Rn : ‖y − x‖ < δ} . Clearly, K ⊂

⋃
x∈K B

Rn

δ (x). Since K is compact, there are

finitely many xj such that K ⊂
⋃N
j=1B

Rn

δj
(xj) and f(BRn

δj
(xj)∩D) ⊂ BR

εj
(f(xj)) ⊂ Oij .

Hence f(K) ⊂
⋃N
j=1Oij .

�
The following corollary is a direct consequence of Theorem 3.7 and Theorem 3.3.

3.8 Corollary. Let f : D ⊂ Rn → R be continuous and K ⊂ D a compact set.
Then f(K) is bounded, i.e. there exists M > 0 with |f(x)| ≤M for all x ∈ K.

In fact, f(K) is compact by the above Theorem 3.7 and Theorem 3.3 implies that f(K)
is bounded.

3.9 Theorem. (Minimum and Maximum). Let f : K ⊂ Rn → R be a continuous
function and K compact. Then the function f has a maximum and a minimum, i.e.
there exist x0, x1 ∈ K with

f(x0) = min
x∈K

f(x) and f(x1) = max
x∈K

f(x).
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The proof is as follows: By Theorem 3.7 f(K) is compact and, therefore, by Theorem
3.3 closed and bounded. Thus

m := inf f(K) > −∞ and M := sup f(K) <∞.

Then there exist sequences (yj)j, (zj)j ⊂ f(K) with yj → m and zj →M . Since f(K)
is closed, it follows from Theorem 2.14 that m and M are in f(K). Therefore, there
exist x0, x1 ∈ K with f(x0) = m and f(x1) = M .

�

The above theorem implies that a closed set and a compact set whose intersection is
empty always have a strictly positive distance.
Here the distance between two sets is defined as follows:

Let M1,M2 ⊂ Rn and x ∈ Rn. Then

d(x,M1) := inf{||x− y|| : y ∈M1}

is called the distance (Abstand) of x from M1 and

d(M1,M2) := inf{||x− y|| : x ∈M1, y ∈M2}

is the distance between the two sets M1 and M2.

3.10 Corollary.
Let A ⊂ Rn be closed and K ⊂ Rn a compact set with A ∩K = ∅. Then d(A,K) > 0.

Proof. The function d(·, A) : Rn → R, x 7→ d(x,A) is continuous (Exercise) and K
is compact by assumption. By Theorem 3.9 there exists an x0 ∈ K with d(x0, A) =
d(K,A). If we had d(x0, A) = 0, there would exist a sequence (aj)j ⊂ A with aj → x0.
A being closed implies that x0 ∈ A, i.e., x0 ∈ A ∩K in contradiction to A ∩K = ∅.

�

3.11 Theorem. (Sequential compactness) For a set K ⊂ Rn the following state-
ments are equivalent:

i) K is compact. (cover compactness)

ii) Every sequence in K has a subsequence that converges to an element a ∈ K.
(sequential compactness)

Proof. (i) =⇒ (ii) : We assume that the assertion is false. Then there exists a sequence
(an)n∈N ∈ K that does not have any convergent subsequence with limit inK. Therefore,
for every x ∈ K there exists a neighborhood Ux of x that contains only finitely many
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terms of the sequence. Since clearly K ⊂
⋃
x∈K

Ux and K is compact, there exists

a finite subcover of K. Then K contains only finitely many terms of the sequence.
Contradiction!

(ii) =⇒ (i) : By assumption K is bounded, because otherwise, there would exist a
sequence (aj)j ⊂ K with |aj| ≥ j for all j ∈ N, which would then, however, contain no
convergent subsequences.
By the Theorem of Heine-Borel we now only have to show that K is closed. Here, let
(aj)j ⊂ K be a sequence with limj→∞ aj = a ∈ Rn. By assumption, there exists a
subsequence (ajl)l∈N with liml→∞ ajl = a′ ∈ K. From the uniqueness of the limit, it
follows that a = a′ and therefore a ∈ K. Theorem 2.14 implies that K is closed. By
the above it is also bounded, therefore, by the Theorem of Heine-Borel K is compact.

�

We now consider the concept of uniform continuity of a function defined on a set
M ⊂ Rn. The continuity of the function f : M ⊂ Rn → R at a point x0 ∈ M means
the following:

(∀ ε > 0) (∃ δ = δ(ε, x0) > 0) (∀x ∈M, ||x− x0|| < δ) |f(x)− f(x0)| < ε.

Here, δ depends on ε and ! x0 . If we can choose δ independent of x0, then f is called
uniformly continuous on M .

3.12 Definition. Let f : M ⊂ Rn → R be a function. Then f is called uniformly
continuous (gleichmässig stetig), if to each ε > 0 there exists a (universal) δ(ε) > 0
with

x, y ∈M, ||x− y|| < δ ⇒ |f(x)− f(y)| < ε.

or in short notation

(∀ ε > 0) (∃ δ > 0) (∀x, y ∈M, ||x− y|| < δ) |f(x)− f(y)| < ε.

We easily verify that f : (0, 1) → R, x 7→ 1/x, is continuous, but not uniformly
continuous. However, f : [0,∞)→ [0,∞), x 7→

√
x, is uniformly continuous.

The following theorem says that a continuous function on a compact set is uniformly
continuous.

3.13 Theorem.
Let f : K ⊂ Rn → R be a continuous function and K a compact set. Then f is
uniformly continuous, i.e., continuous functions on compact sets are uniformly contin-
uous.
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Proof. Let ε > 0. The continuity of f says that for all y ∈ K, there exists a radius
r(y) > 0 with

|f(y)− f(z)| < ε

2
if z ∈ Bry(y) ∩K.

Since K ⊆
⋃
y∈K

B ry
2
(y) and K is compact, there exist finitely many y1, · · · , yn with

K ⊆
N⋃
j=1

B ryi
2

(yj).

Let δ := 1
2
min(r(y1), · · · , r(yN)) and x, x′ ∈ K with ||x− x′|| ≤ δ. Then there exists a

j ∈ {1 · · ·N} with x ∈ B ryj
2

(yj) and x′ ∈ Bryj
(yj) and

|f(x)− f(x′)| ≤ |f(x)− f(yj)|︸ ︷︷ ︸
< ε

2

+ |f(yj)− f(x′)|︸ ︷︷ ︸
< ε

2

< ε.

�

The extension of a given continuous function f : M ⊂ Rn → C to a continuous
function on M is closely related to the concept of uniform continuity. More precisely,
let x0 ∈ Rn\M be an accumulation point of M . We want to examine the question
under which circumstances there exists a continuous extension of f to M ∪ {x0}.

At first, we introduce the concept of limit of a function (as opposed to sequence).

3.14 Definition. A function f : M ⊂ Rn → C has a limit a in the accumulation
point x0 of M , if for each sequence (xj)j ⊂M\{x0} with xj → x0, we have

lim
j→∞

f(xj) = a.

In this case, we also say that f(x) converges to a for xj → x0, and we write

lim
x→x0

f(x) = a or f(x)→ a for x→ x0.

If x0 ∈ M and f is continuous at x0, then the value of the function at x0 is equal to
the limit, i.e. we have limx→x0 f(x) = f(x0). Furthermore, we call the function

F : M ∪ {x0} → R,

x 7→
{
f(x) x ∈M
y0 x = x0

a continuous extension if limx→x0 f(x) = y0 exists.
For the special case M ⊂ R, we furthermore define the limit from the left (links-

seitiger Grenzwert) of f in x0 to be y0, in symbols

lim
x→x0−0

f(x) := y0 (or in short lim
x→x0−

f(x) := y0),
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if for all sequences (xj)j ⊂M ∩ (−∞, x0) with xj → x0, we have limj→∞ f(xj) = y0.
Analogously, we call

lim
x→x0+0

f(x) := lim
x→x0+

f(x) := y0,

the limit from the right (rechtsseitiger Grenzwert) of f in x0, if for all sequences (xj)j ⊂
M ∩ (x0,∞) with xj → x0, we have limj→∞ f(xj) = y0.

If M ⊂ R is not bounded from above and we are given a function f : M → C, we call
a ∈ C the limit of f in ∞, if for each ε > 0 there exists N0 ∈ N such that

|f(x)− a| < ε for all x ∈M with x > N0.

Analogously, one defines the limit in −∞.

3.15 Examples.
a) Let M = R\{1} and f : M → R be defined by f(x) = xn−1

x−1
. Then

lim
x→1

f(x) = lim
x→1

xn − 1

x− 1
= n,

because xn−1
x−1

= 1 + x+ x2 + · · ·xn−1.

b)

lim
z→0

ez − 1

z
= 1,

because
ez − 1

z
=
z + z2

2!
+ z3

3!
+ · · ·

z
= 1 +

z

2!
+
z2

3!
+
z3

4!
+ . . .

Therefore | ez−1
z
− 1| ≤ | z

2
|(1 + |z| + |z2| + . . .) = |z|

2(1−|z|) → 0 for z → 0 if |z| < 1.

(geometric sum)

c) The limit

lim
x→0

x

|x|
does not exist: Define the function

f : R\{0} → R , x 7→
{

1 : x > 0
−1 : x < 0

Then the limit from the left limx→0− = −1 does not coincide with the limit from the
right limx→0+ = 1.

The following theorem characterizes when a function can be continuously extended
in terms of uniform continuity.
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3.16 Theorem. Let M ⊂ R be a bounded set and f : M → R be a function. Then
the following are equivalent:

i) There exists a unique continuous extension F : M ⊂ R → R of f on M , i.e.
F (x) = f(x) for x ∈M .

ii) f is uniformly continuous.

Proof. (i) ⇒ (ii) : Because M is bounded and closed, it is compact by the Heine-
Borel Theorem, and the claim follows from Theorem 3.13.

(ii) ⇒ (i) : See the Exercises.
�

To conclude this section, we consider a function g (see below) constructed via the
so-called ‘saw tooth function’ f , which is defined by

f : R→ R, f(x) =

∣∣∣∣x− [x]− 1

2

∣∣∣∣ .
Clearly f is continuous on R. Now define

g : (0, 1]→ R, g(x) = f(
1

x
),

which as a composition of two continuous functions is continuous on (0, 1]. But g is
not uniformly continuous since

g(
1

n
)− g( 1

n+ 1/2
) = f(n)− f(n+ 1/2) = 1/2, n ∈ N.

Therefore, by the above theorem, we cannot extend g continuously to the closed interval
[0, 1]; in particular the limit limx→0+ g(x) does not exist.
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4 The exponential function and related functions

Central for this section is the exponential function, one of the most important functions
of all mathematics. With its help, we will firstly introduce the trigonometric functions
sine and cosine, and secondly we will examine the already known power and logarithm
functions more closely.

Many of the following definitions and arguments can be traced back directly to
LEONHARD EULER (1707-1783), one of the all-time greatest mathematicians. Born
in Basel in 1707, he enrolled at the university of Basel at the age of 13 where he was
a student of Johann Bernoulli. In 1727, he went to the Academy of St. Petersburg
where he was appointed a professorship in 1733. During this time, the academies were
the center of scientific research, and Euler spent his whole life at the academies of St.
Petersburg and Berlin (1741-1766).

Euler was most influential in mathematics through his textbooks. His “ Introductio
in analysin infinitorum” of 1748 paved the way for analysis as a branch of mathematics
on a par with geometry and algebra. Our contemporary mathematical notation is due
to Euler in great parts.

Before we — following Euler — define sine and cosine as power series, we recall the
exponential series, already known from Chapter II,

ez = exp z =
∞∑
n=0

zn

n!
= 1 + z +

z2

2
+ . . . , z ∈ C,

with infinite radius of convergence. The power series of sine and cosine, which we will
examine thoroughly in the following, have a close relationship to the exponential series.
Here it is essential to work with complex numbers. Only then the connection between
the exponential and the trigonometric functions becomes fully apparent. Retrospec-
tively, from considering the trigonometric functions, we will also gain new insights
concerning the exponential function; e.g. that the exponential function is periodic
with a complex period.

4.1 Definition. The sine series and cosine series are defined as

sin z :=
∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
= z − z3

3!
+
z5

5!
− . . . , z ∈ C,

cos z :=
∞∑
n=0

(−1)n
z2n

(2n)!
= 1− z2

2!
+
z4

4!
− . . . , z ∈ C.

These series have the following elementary properties:

4.2 Theorem. a) The sine and cosine series have an infinite radius of convergence.
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b) Euler’s formula
eiz = cos z + i sin z, z ∈ C.

holds.

c) The functions z 7→ sin z and z 7→ cos z are continuous on C.

The claim about the radius of convergence follows from the Cauchy-Hadamard formula
II.5.2. Euler’s formula is a direct consequence of the presentation

eiz =
∞∑
n=0

(iz)n

n!
=

∞∑
n=0

(iz)2n

(2n)!
+

∞∑
n=0

(iz)2n+1

(2n+ 1)!
= cos z + i sin z, z ∈ C.

The continuity of z 7→ sin z and z 7→ cos z follows from Theorem 1.7.

Further properties of sine and cosine can be deduced directly from the definition like-
wise.

4.3 Corollary. a) The cosine function cos : C → C, z 7→ cos z is an even function,
and the sine function sin : C→ C, z 7→ sin z is an odd function, , i.e. we have

cos z = cos(−z) and sin z = − sin(−z), z ∈ C.

b) For all z ∈ C we have

cos z =
eiz + e−iz

2
and sin z =

eiz − e−iz

2i
, z ∈ C.

c) For x ∈ R we have cosx = Re (eix) and sin x = Im (eix).

d) For all x ∈ R we have |eix| = 1.

The functional equation of the exponential function implies the addition theorems for
the sine and cosine functions which express how we can rewrite these functions applied
to sums of angles.

4.4 Theorem. (Angle sum and difference identities). The following equations hold
for all z, w ∈ C.

cos(z ± w) = cos z cosw ∓ sin z sinw,

sin(z ± w) = sin z cosw ± cos z sinw,

sin z − sinw = 2 cos(
z + w

2
) sin(

z − w
2

),

cos z − cosw = −2 sin(
z + w

2
) sin(

z − w
2

).
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Proof. For all z, w ∈ C, we have

cos z cosw − sin z sinw =
1

4
[(eiz + e−iz)(eiw + e−iw) + (eiz − e−iz)(eiw − e−iw)]

=
1

4
[ei(z+w) + e−i(z+w) + ei(z+w) + e−i(z+w)]

=
1

2
[ei(z+w) + e−i(z+w)] = cos(z + w).

by Corollary 4.3 b). The proof of the remaining identities is similar and left to the
reader.

�

From the first of the above identities we infer (take z = w)

cos2 z + sin2 z
4.4
= cos(z − z) = cos 0 = 1, z ∈ C.

We write down this important relation explicitly in the following corollary.

4.5 Corollary. For all z ∈ C we have

cos2 z + sin2 z = 1.

In the following we examine the exponential function specifically for real arguments.
The proof of the following properties is left to the reader as an exercise.

4.6 Theorem. The following statements hold:

a) ex < 1 if x < 0 and ex > 1 if x > 0.

b) The function exp : R→ R+ is strictly monotone increasing.

c) For each (fixed) α ∈ R we have

lim
x→∞

ex

xα
=∞ ;

in other words, the exponential function grows faster for x→∞ than every power xα.

d) For every α ∈ R we have

lim
x→∞

xαe−x = lim
x→∞

xα

ex
= 0 ;

in other words, e−x decreases faster than every power xα.
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Since the exponential function exp : R→ (0,∞) is continuous, surjective, and strictly
monotone increasing, by III.1, there exists an inverse function

log : (0,∞)→ R

of the exponential function. As in Chapter II, this function will be called logarithm
function. In particular, we have

log 1 = 0 and log e = 1.

Furthermore, the logarithm function has the properties

log(xy) = log x+ log y, x, y ∈ (0,∞)

log(
x

y
) = log x− log y, x, y ∈ (0,∞).

This follows directly from the functional equation of the exponential function, because
if we let a := log x and b := log y, we have x = ea and y = eb and it follows that
xy = ea · eb = ea+b; hence log(xy) = log x+ log y.

The exponential function also allows to define general powers az for a > 0 and z ∈ C
in accordance with the previous definition of powers, compare Example 1.14 c).
If we define

az := ez log a, z ∈ C, a > 0,

then we have the following calculation rules for z, w ∈ C and a, b > 0 :

azaw = az+w, awbw = (ab)w, z, w ∈ C,

log(ax) = x log a, (ax)y = axy, x, y ∈ R.
To prove the first rule observe azaw = ez log aew log a = e(z+w) log a = a(z+w). The others
follow analogously.

We also verify that for each α > 0 there holds

lim
x→∞

log x

xα
= 0 and lim

x→0+
xα log x = 0

In other words, the logarithm function grows slower than any (positive) power xα for
x→∞, and its singularity at the origin is controlled by any (tiny) positive x-power.

Let us now discuss the sine and cosine functions for real arguments; in particular, we
are interested in their roots.

4.7 Lemma. For x ∈ (0, 2] we have:

x− x3

6
< sinx < x and 1− x2

2
< cosx < 1− x2

2
+
x4

24
.

In particular, sin x > 0 for x ∈ (0, 2].
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Proof. For x ∈ (0, 2] we have

sin x = x− x3

3!
+
x5

5!
− x7

7!︸ ︷︷ ︸
>0

+
x9

9!
− x11

11!︸ ︷︷ ︸
>0

+ . . . > x− x3

3!
,

because
xn

n!
− xn+2

(n+ 2)!
=
xn[(n+ 1)(n+ 2)− x2]

(n+ 2)!
> 0.

On the other hand,

sinx = x−
(
x3

3!
− x5

5!

)
︸ ︷︷ ︸

>0

−
(
x7

7!
− x9

9!

)
︸ ︷︷ ︸

>0

+ . . . < x,

and this implies the proposition for the sine function. The estimate for cos is analogous.
�

We also note that the cosine is a strictly decreasing function on the interval [0, 2] : For,
if x > y, we have

cosx− cos y
4.4
= −2 sin(

x+ y

2
)︸ ︷︷ ︸

>0

sin(
x− y

2
)︸ ︷︷ ︸

>0

< 0, x, y ∈ [0, 2].

We can now show that the cosine function has exactly one root in the interval [0, 2].

4.8. Theorem and definition of the number π. The cosine function has exactly
one root x0 in the interval [0, 2]. We define

π := 2x0.

Proof. We have cos(0) = 1 and the above Lemma 4.7 implies that

cos(2) < 1− 22

2
+ 24

24
= −1

3
< 0.

Because cos is continuous, the intermediate value theorem implies that cos has at least
one root x0 in [0, 2]. The uniqueness follows from the strict monotonicity of cos in
[0, 2].

�

The term π became popular through the textbook of Euler that was mentioned above,
and is possibly derived from the Greek word πε%ιϕε%εια for circumference. If we try
to compute π numerically, we obtain

π = 3.14159 26535 89793 23846 . . .
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With the following mnemonic these digits of π can be reproduced, if one assigns to
each single word the number of its letters:

“Sir, I send a rhyme excelling in sacred truth and rigid spelling numerical sprites
elucidate for me the lexicon’s dull weight”

4.9 Remark. A real number is called algebraic if it is a root of a non-trivial polynomial
with integer coefficients. For example, every rational number p/q is algebraic as a root
of the polynomial x 7→ qx − p. Real numbers which are not algebraic are called
transcendental. In particular, they are irrational.

Already in 1761, H. J. Lambert proved that π is irrational. The transcendence proof
of π was given 1882 by F. Lindemann. This theorem also decided the more than 2000
years old and still famous problem of squaring the circle: it is impossible to give a
ruler-and-compass construction of a square that has the same area as a given circle.

The above definition of the number π implies in particular that

cos(
π

2
) = 0 and sin(

π

2
) = 1.

This identity holds because cos2(π
2
) + sin2(π

2
) = 1 implies firstly sin π

2
= ±1, and the

positivity of the sine in (0, 2] then yields sin π
2

= 1.
If we combine these formulas with Euler’s formula of Theorem 4.2 b),we obtain eiπ/2 =
cos(π/2) + i sin(π/2) = i. More generally we have the following table of values of
cosx, sin x and eix :

x 0 π
2

π 3
2
π

cosx 1 0 −1 0
sin x 0 1 0 −1
eix 1 i −1 −i

If we combine the above function values with the functional equation of the exponential
function, we can deduce the important periodicity of the exponential function.

4.10 Theorem. For all z ∈ C and n ∈ Z we have

ez+i
n
2
π = ezin, and in particular ez+2inπ = ez.

This means that the exponential function has the purely imaginary period 2πi.

This result transferred to the trigonometric functions gives the following corollary.

4.11 Corollary. a) For z ∈ C we have

i) cos(z + π
2
) = − sin z, cos(z + π) = − cos z, cos(z + 2π) = cos z,
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ii) sin(z + π
2
) = cos z, sin(z + π) = − sin z, sin(z + 2π) = sin z.

In particular, the functions sin and cos are periodic functions with real period 2π.

b) We have

cos z = 0 ⇔ z =
π

2
+ nπ for an n ∈ Z,

sin z = 0 ⇔ z = nπ for an n ∈ Z,
ez = 1 ⇔ z = 2niπ for an n ∈ Z.

We conclude our discussion of the trigonometric functions for the time being by intro-
ducing the tangent and cotangent functions. We define the tangent and the cotangent
functions by

tan : C\{π/2 + nπ : n ∈ Z} → C, z 7→ sin z

cos z
,

cot : C \ {nπ : n ∈ Z} → C, z 7→ cos z

sin z
.

To conclude this section, we consider the inverse functions of the trigonometric and
the hyperbolic functions. We begin with the following properties of sin, cos and tan.

4.12 Lemma. a) The function cos : [0, π] → [−1, 1] is continuous, surjective and
strictly decreasing.

b) The function sin : [−π
2
, π

2
]→ [−1, 1] is continuous, surjective and strictly increasing.

c) The function tan : (−π
2
, π

2
)→ R is continuous, surjective and strictly increasing.

Proof. (a) Since cos 0 = 1, cos π = −1, and the cosine is continuous by Theorem
2.4, we have surjectivity on account of the intermediate value theorem. Furthermore,
since the cosine is in particular strictly decreasing on [0, π/2] and cos x = − cos(π−x)
the cosine is also strictly decreasing on [π/2, π], i.e., injectivity.

(b) Since sinx = cos(π/2− x) the assertions follow from (a).

(c) Since sine is strictly increasing and cosine strictly decreasing on [0, π/2) and
tan(−x) = − tan x the tangent is strictly increasing and continuous on (−π/2, π/2).
Also limx→π/2− tan x =∞ and, therefore, surjectivity follows.

�
The above lemma therefore implies that the inverse functions

arccos : [−1, 1]→ [0, π]

arcsin : [−1, 1]→ [−π
2
,
π

2
]

arctan : R→ (−π
2
,
π

2
)
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of sin, cos, and tan, resp., exist on the respective intervals. These are called inverse
trigonometric functions or cyclometric functions and they are all continuous by The-
orem 1.13.

Our current state of knowledge now allows to treat the polar form of complex
numbers. We have the following theorem.

4.13 Theorem. (Polar form of complex numbers). Every z ∈ C \ {0} has a repre-
sentation of the form

z = reiϕ,

where r = |z| and ϕ ∈ R is determined up to addition of an integer multiple of 2π.

In the above representation, r is called the absolute value (or modulus) and ϕ the
argument (or angle) of the complex number z.

Proof. For z ∈ C \ {0} there exist x, y ∈ R with z
|z| = x+ iy. Then we have x2 + y2 = 1

and therefore x, y ∈ [−1, 1]. Therefore, α := arccosx is well defined. Now x = cosα
implies sinα = ±

√
1− x2 = ±y. We set

ϕ :=

{
α : sinα = y
−α : sinα = −y =

{
arccos x, y ≥ 0,
− arccos x, y < 0,

In either case we have that ϕ is well defined and ϕ ∈ [0, π] provided y ≥ 0: By
Lemma 4.7, we have sinϕ ≥ 0 for all ϕ ∈ [0, 2] and because sinϕ = sin(π−ϕ) (cf. 4.11
b)), we deduce sinϕ ≥ 0 for all ϕ ∈ [0, π]. Furthermore, because sin2 ϕ = 1− cos2 ϕ =
y2, it follows that sinϕ = y. Therefore we obtain

eiϕ = cosϕ+ i sinϕ = x+ iy =
z

|z|
,

and thus z = reiϕ for r = |z|. The case y < 0 is treated analogously.
�

4.14 Remarks. a) The polar form gives us a nice geometric way to visualize the
product of complex numbers in the complex plane. For z = |z|eiϕ and w = |w|eiψ, we
have

z · w = |zw|ei(ϕ+ψ).

b) Furthermore, for each z ∈ C\{0} and each n ∈ N, there exist exactly n different
numbers z1, . . . , zn ∈ C with (zk)

n = z for all k = 1, . . . , n. These numbers are called
n-th roots of z. In particular, for z = 1 there exist exactly n different roots of unity
ξ1, ξ2, . . . , ξn, i.e., complex numbers ξk with ξnk = 1 for all k = 1, . . . , n. The n-th roots
of a complex number z = reiϕ are given explicitly by

zk := n
√
r ξk with ξk = ei(

ϕ+2πk
n

) for all k = 1, . . . , n.
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In many concrete problems, the exponential function appears in the form (ez + e−z)/2
or (ez − e−z)/2. Based on this, we define the hyperbolic functions as follows:

cosh z :=
1

2
(ez + e−z) hyperbolic cosine,

sinh z :=
1

2
(ez − e−z) hyperbolic sine,

tanh z :=
sinh z

cosh z
hyperbolic tangent,

coth z :=
cosh z

sinh z
hyperbolic cotangent.

The relations
cosh z = cos iz, sinh z = −i sin iz, z ∈ C

and
cosh2 z − sinh2 z = 1, z ∈ C

are easily verified as well as their power series representation

cosh z =
∞∑
j=0

z2j

(2j)!
, and sinh z =

∞∑
j=0

z2j+1

(2j + 1)!
, z ∈ C.



Chapter IV

Differential Calculus in one
Variable

1 Differentiable Functions

The differential and integral calculus, which dates back to Leibniz and Newton, builds
the core of all basic lectures on analysis. In this section, we restrict our attention to
the differential calculus of functions in one real variable, however we do admit that the
functions may have complex values.

We begin with the problem to approximate a given function f : D ⊂ R → K at
the point x0 ∈ D by an affine function. If we have K = R, we can interpret this
geometrically as the problem to find the tangent line of the graph of f at the point
(x0, f(x0)).

The basic idea to solve the above problem is to approximate the tangent lines by
the lines through the points (x0, f(x0)) and (x0 + h, f(x0 + h)) for small h. The slope

of these lines is given by f(x0+h)−f(x0)
h

. This motivates the following definition.

1.1 Definition. Let D ⊂ R and assume that x0 ∈ D is an accumulation point of D.
We call a function f : D → K differentiable (differenzierbar) at x0 ∈ D, if the limit

lim
x→x0

x∈D\{x0}

f(x)− f(x0)

x− x0

= lim
h→0, h6=0

x0+h∈D

f(x0 + h)− f(x0)

h

exists. This limit is called derivative (Ableitung) of f at x0 and is denoted by f ′(x0) or
df
dx

(x0). If f is differentiable at every x ∈ D, we say that f is differentiable on D and
we call the function f ′ : D → K, x 7→ f ′(x) the derivative of f .

87
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1.2 Examples. a) The function f : R → R, f(x) = xn is differentiable for each
n ∈ N and one has f ′(x) = nxn−1 for all x ∈ R. Just observe that

xn − xn0
x− x0

= xn−1
0 + xxn−2

0 + x2xn−3
0 + . . .+ xn−1 x→x0−→ xn−1

0 + xn−1
0 + . . .+ xn−1

0 = nxn−1
0 .

b) The function f : R→ C, f(x) = eαx is differentiable for all α ∈ C and we havef ′(x) =
αeαx, because we have

eα(x0+h) − eαx0

h
= eαx0(

eαh − 1

h
)
h→0−→ αeαx0 ,

in analogy to Example 3.15 b).

In the following theorem, we give an equivalent reformulation of the concept of
differentiability. For this, we require that x0 ∈ D is an accumulation point of D.

1.3 Theorem. Let f : D ⊂ R → K be a map and x0 ∈ D an accumulation point.
The following statements are equivalent.

i) The function f is differentiable at x0.

ii) There exists a function ϕ : D → K which is continuous at x0, such that

f(x) = f(x0) + (x− x0)ϕ(x), x ∈ D.

In this case, we have f ′(x0) = ϕ(x0).

iii) There exists a linear mapping L : R→ K such that

lim
h→0

f(x0 + h)− f(x0)− Lh
h

= 0.

In this case, we have f ′(x0)h = Lh for all h ∈ R.

Proof. i) =⇒ ii): By assumption, the function x 7→ f(x)−f(x0)
x−x0

for x ∈ D \ {x0} has an
extension ϕ which is continuous at x0. In x0 we then have ϕ(x0) = f ′(x0).

ii) =⇒ iii): The linear mapping Lh := ϕ(x0)h = f ′(x0)h has the properties which
are required in statement iii).

iii) =⇒ i): Let L be a linear mapping for which statement iii) holds. If we have
Lh = αh, h ∈ R, for some α ∈ C, it follows that

lim
h→0

f(x0 + h)− f(x0)

h
− α = lim

h→0

f(x0 + h)− f(x0)− αh
h

= 0;

This means that f is differentiable in x0 and we have f ′(x0) = α.
�
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The statement iii) of the above theorem says that for a differentiable function f
the increment f(x0 + h) − f(x0) is approximated so well by Lh, that the difference
f(x0 +h)− f(x0)−Lh tends to 0 faster for h→ 0 than h itself. This formulation aims
at approximating functions locally by linear functions and will be further extended
later by the theorem of Taylor (Taylor formula). Also, this formulation is the starting
point for the generalization of the notion of differentiability to functions of several
variables.

In particular, Theorem 1.3 immediately implies that a function, differentiable at
x0 , is continuous at this point.

1.4 Corollary. A function f : D → K, which is differentiable in x0 ∈ D ⊂ R, is also
continuous at x0.

We note that the converse of Corollary 1.4 does not hold in general. For this, consider
for example the absolute value function f(x) = |x| in the point 0. We further remark
that there exist continuous functions on R which are differentiable in no point of their
domain of definition.

1.5 Theorem. (Calculation rules for differentiable functions) Let f, g : D ⊂ R→ K
be functions differentiable in x0 ∈ D. Then the following statements hold:

a) The function αf + βg : D ⊂ R→ K is differentiable in x0 for all α, β ∈ K and

(αf + βg)′(x0) = αf ′(x0) + βg′(x0).

Thus, differentiation is a linear mapping; here differentiation is interpreted as an op-
eration acting from some set of functions into another set of functions.

b) (Product rule). The product f · g is differentiable at x0 and we have

(f · g)′(x0) = f ′(x0)g(x0) + f(x0)g
′(x0).

c) (Quotient rule). If g(x0) 6= 0, then there exists a δ > 0 such that g(x) 6= 0 for all

x ∈ D ∩ (x0 − δ, x0 + δ) and
f

g
: D ∩ (x0 − δ, x0 + δ)→ K is differentiable in x0 and

(
f

g

)′
(x0) =

f ′(x0)g(x0)− f(x0)g
′(x0)

g2(x0)
.

Proof. The statement a) follows directly from the calculation rules for limits.

To prove b), let h 6= 0 and x0 + h ∈ D. Then we have
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f(x0 + h)g(x0 + h)− f(x0)g(x0)

h

=
f(x0 + h)− f(x0)

h
g(x0 + h) +

g(x0 + h)− g(x0)

h
f(x0)

h→0−→ f ′(x0)g(x0) + g′(x0)f(x0).

To prove c) we note that
f

g
= f · 1

g
, thus by (b) it is sufficient to discuss 1/g.

1

h

( 1

g(x0 + h)
− 1

g(x0)

)
=

1

g(x0 + h)g(x0)
· g(x0)− g(x0 + h)

h

h→0−→ − g
′(x0)

g2(x0)
.

�

1.6 Examples. a) A polynomial p of the form p(x) = 5x3 +7x2 +3x is differentiable
with derivative p′(x) = 15x2 + 14x + 3. This follows from Example 1.2 a) and Theo-
rem 1.5 a).

b) The sine as well as the cosine functions are differentiable for all x ∈ R and we have

sin′(x) = cosx, cos′(x) = − sin x, x ∈ R,

because sin x = 1
2i

(eix − e−ix) and Example 1.2 b) and Theorem 1.5 a) imply

(sinx)′ =
1

2i
(ieix + ie−ix) = cosx.

c) The quotient rule implies that the derivative of the tangent function is given by

(tan x)′ =
cos2 x+ sin2 x

cos2 x
III.4.3
=

1

cos2 x
= 1 + tan2 x, x ∈ R \ {π

2
+ kπ : k ∈ Z}.

d) For n ∈ N let f : R\{0} → R be given by x 7→ x−n. Then we have f ′(x) = −nx−n−1,
because if we define h(x) = xn, then we have f = 1

h
, and by the quotient rule we can

deduce f ′(x) = −nxn−1

x2n = −nx−n−1 for all x ∈ R \ {0}.

1.7 Theorem. (Chain rule) Let f : Df ⊂ R → K and g : Dg ⊂ R → R be two
functions with g(Dg) ⊂ Df . If g is differentiable in x0 ∈ Dg and f is differentiable in
y0 := g(x0) ∈ Df , then f ◦ g : Dg ⊂ R→ K is differentiable in x0 and we have

(f ◦ g)′(x0) = g′(x0) · f ′(y0)
∣∣∣
y0=g(x0)

= f ′(g(x0)) · g′(x0).
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Proof. By Theorem 1.3, there exist functions ϕg and ϕf which are continuous at x0

and y0 := g(x0), resp., such that

f(y)− f(y0) = (y − y0)ϕf (y), ϕf (y0) = f ′(y0), y ∈ Df

g(x)− g(x0) = (x− x0)ϕg(x), ϕg(x0) = g′(x0), x ∈ Dg.

Therefore, we have

(f ◦ g)(x)− (f ◦ g)(x0) = (g(x)− g(x0))ϕf (g(x)) = (x− x0)ϕg(x)ϕf (g(x))︸ ︷︷ ︸
=:ϕ(x)

with a function ϕ := ϕg · (ϕf ◦g), which is continuous at x0. Now, Theorem 1.3 implies
that f ◦ g is differentiable at x0 and, by the preceding formula,

(f ◦ g)′(x0) = ϕ(x0) = ϕg(x0)ϕf (g(x0)) = f ′(g(x0)) · g′(x0).

�

To conclude this section, we examine the derivative of the inverse of a given differen-
tiable function.

1.8 Theorem. (Derivative of the inverse function). Let J ⊂ R be an interval and let
g be the inverse function of a continuous and strictly monotone function f : J → R.
If f is differentiable at x0 ∈ J and f ′(x0) 6= 0, then g : f(J) → R is differentiable at
y0 := f(x0) and we have

g′(y0) = g′(f(x0)) =
1

f ′(x0)
=

1

f ′(g(y0))
.

Proof. By assumption and Theorem 1.3, there exists a function ϕ which is continuous
at x0 such that f(x) − f(x0) = (x − x0)ϕ(x) for all x ∈ J . Because we have ϕ(x0) =
f ′(x0) 6= 0, there exists a δ > 0 such that ϕ(x) 6= 0 for all x ∈ Jδ := J ∩ [x0− δ, x0 + δ].
If we let x = g(y) for y ∈ f(Jδ), we have

y − y0 = f(g(y))− f(g(y0)) = (g(y)− g(y0))ϕ(g(y)), y ∈ f(Jδ).

Therefore, g(y) − g(y0) = (y − y0)
1

ϕ(g(y)
holds, and ϕ ◦ g is continuous at x0 by Sec-

tion III.1. Theorem 1.3 now implies that g is differentiable at y0 and that we have

g′(y0) =
1

ϕ(g(y0))
=

1

ϕ(x0)
=

1

f ′(x0)
=

1

f ′(g(y0))
.

�

1.9 Example. The function tan : (−π/2, π/2)→ R is differentiable by 1.6 c) and we
have tan′(x) = 1 + tan2 x for all x ∈ (−π/2, π/2). Therefore, arctan : R → R is also
differentiable and we have

arctan′(y) =
1

1 + tan2(arctan y)
=

1

1 + y2
.
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2 The Mean Value Theorem and Applications

In Section III.3, we saw that a continuous real valued function f on a compact set
has a global maximum and a global minimum. We shall now see that if the function
is furthermore differentiable, the derivative gives an additional information on the
location of the extrema. More precisely, we have the following (necessary) criterion for
extremal values; as an application of the mean value theorem, we will later also give a
sufficient criterion.

2.1 Definition. If f : D ⊂ R → R is a function, we call x0 ∈ D a local maximum
(minimum) (lokales Maximum (Minimum)) of f , if there exists a δ > 0 such that

f(x) ≤ f(x0) (f(x) ≥ f(x0)) for all x ∈ D ∩ (x0 − δ, x0 + δ).

Local minima and maxima are also called local extrema (lokale Extrema) of a given
function f . In the following, we will give criteria which allow to examine a given
function for local extrema. Firstly, we begin with a necessary criterion.

2.2 Theorem. Let a, b ∈ R with a < b and let f : (a, b)→ R be a function which has
a local extremum at x0 ∈ (a, b). If f is differentiable in x0, then f ′(x0) = 0.

Proof. Let x0 be a local minimum of f . Then there exists a δ > 0 with

f(x)− f(x0) ≥ 0, for all x ∈ (x0 − δ, x0 + δ).

Therefore we have, when we let x tend to x0 from the left hand side,

f ′(x0) = lim
x→x0−

f(x)− f(x0)

x− x0

≤ 0 .

For the right sided limit we obtain

f ′(x0) = lim
x→x0+

f(x)− f(x0)

x− x0

≥ 0 .

This implies f ′(x0) = 0. The proof for a local maximum is analogous.
�

At this point we remark that the converse of the above theorem does not hold in
general, and that a function f that is defined on a closed interval [a, b] can attain an
extremum at a or b even if f ′(a) 6= 0 and f ′(b) 6= 0.

The following theorem is an easy consequence of the above theorem.

2.3 Corollary (Rolle’s Theorem (Satz von Rolle)). Let f : [a, b] → R be a
continuous function which is differentiable on (a, b). If f(a) = f(b), then there exists
ξ ∈ (a, b) with f ′(ξ) = 0.
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Proof. If f is a constant function, then we have f ′ = 0 and, therefore, the proposition
holds. Let us now assume that f is not constant. By Theorem III.3.9, f attains its
maximum max f and minimum min f on the compact interval [a, b]. Then
max f 6= f(a) = f(b) or min f 6= f(a) = f(b). Thus, there is a ξ ∈ (a, b) which is an
extremum of f . By Theorem 2.2 above, we thus have f ′(ξ) = 0.

�

The following mean value theorem is the central theorem of this section. It has far
reaching consequences for the analysis in one real variable.

2.4 Theorem (Mean value theorem (Mittelwertsatz)). If f : [a, b] → R is a
continuous, real-valued function which is differentiable on (a, b), then there exists a
ξ ∈ (a, b) with

f(b)− f(a) = f ′(ξ)(b− a).

Proof. We define a function F : [a, b]→ R by

F (x) := f(x)− f(b)− f(a)

b− a
(x− a).

Then F is continuous on [a, b] and differentiable on (a, b). We have F (a) = f(a) = F (b).
Therefore, by Rolle’s Theorem 2.3, there exists a ξ ∈ (a, b) with

F ′(ξ) = 0 = f ′(ξ)− f(b)− f(a)

b− a
.

�

At this point, we remark that the mean value theorem does not hold for complex-
valued differentiable functions f : [a, b]→ C. A counterexample is given by the function
f : [0, 2π]→ C, defined by f(x) = eix. We have f(0) = 1 = f(2π), but f ′(x) = ieix 6= 0
for all x ∈ [0, 2π].

The mean value theorem has many important consequences. Some of these are assem-
bled in the following corollary.

2.5 Corollary. Let f : [a, b]→ R be a continuous function which is differentiable on
(a, b). Then the following propositions hold.

(a) f is constant ⇔ f ′(x) = 0 for all x ∈ (a, b).

(b)

f ′(x) ≥ 0 for all x ∈ (a, b) ⇔ f is increasing on [a, b].

f ′(x) ≤ 0 for all x ∈ (a, b) ⇔ f is decreasing on [a, b].

f ′(x) > 0 for all x ∈ (a, b) ⇒ f is strictly increasing on [a, b].

f ′(x) < 0 for all x ∈ (a, b) ⇒ f is strictly decreasing on [a, b].
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(c) If f ′(x0) = 0 for an x0 ∈ (a, b) then, for a sufficiently small δ > 0, x0 is a

i) local minimum, if f ′ ≤ 0 in (x0 − δ, x0) and f ′ ≥ 0 on (x0, x0 + δ);

ii) local maximum, if f ′ ≥ 0 in (x0 − δ, x0) and f ′ ≤ 0 on (x0, x0 + δ).

(d) If |f ′(x)| ≤ L for all x ∈ [a, b], we have

|f(x)− f(y)| ≤ L|x− y|, for all x, y ∈ [a, b],

i.e., f is Lipschitz continuous with Lipschitz constant L.

(e) The function f ′ has the intermediate value property even though it is not con-
tinuous in general. More precisely, let f ′(a) 6= f ′(b) and min{f ′(a), f ′(b)} < α <
max{f ′(a), f ′(b)}. Then, there exists ξ ∈ (a, b) with f ′(ξ) = α.

Proof. a) If f is constant, it is clear that f ′(x) = 0 for all x ∈ (a, b). Conversely, let
x ∈ (a, b]. By the mean value theorem and the assumption, there exists ξ ∈ (a, x) with
f(x)− f(a) = f ′(ξ)(x− a) = 0. Therefore, f(x) = f(a).

b) The definition of differentiability immediately implies that f ′(x) ≥ 0 for all x ∈ (a, b),
given that f is increasing. Conversely, let a ≤ x < y ≤ b. Again, by the mean value
theorem, there exists a ξ ∈ (x, y) with

f(y)− f(x) = f ′(ξ)︸︷︷︸
≥0

(y − x)︸ ︷︷ ︸
>0

≥ 0,

if f ′ ≥ 0.

The propositions c), d) and e) are left as exercises.
�

A further corollary of the mean value theorem is the following characterization of
the exponential function on R.

2.6 Corollary. The exponential function exp is the only differentiable function f :
R→ C with f ′ = f and f(0) = 1.

As proof, consider the function g(x) := f(x)e−x for x ∈ R. We have g′(x) = [f ′(x) −
f(x)]e−x = 0 for all x ∈ R and, therefore, g is a constant with the value g(0) = 1.

2.7 Theorem (Generalized mean value theorem1). Let f, g : [a, b] → R be con-
tinuous functions which are differentiable in (a, b) and assume that g′(x) 6= 0 for all
x ∈ (a, b). Then we have g(a) 6= g(b) and there exists a ξ ∈ (a, b) with

f(b)− f(a)

g(b)− g(a)
=
f ′(ξ)

g′(ξ)
.

1also known as Cauchy mean value theorem
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Proof. Firstly, we have g(a) 6= g(b), because otherwise, by Rolle’s Theorem 2.3, there
would exist a x ∈ (a, b) with g′(x) = 0, contradicting the assumption.
To prove the theorem, we define F : [a, b]→ R by

F (x) := f(x)− f(b)− f(a)

g(b)− g(a)
(g(x)− g(a)).

Then F (a) = f(a) = F (b) and by Rolle’s theorem, there exists a ξ ∈ (a, b) with

0 = F ′(ξ) = f ′(ξ)− f(b)− f(a)

g(b)− g(a)
g′(ξ).

�

Making use of the generalized mean value theorem, we also prove the rules of l’Hospital.
They allow to compute limits of the form limx→x0

f(x)
g(x)

where f(x) as well as g(x) tend
to ∞ for x→ x0.

2.8 Corollary (L’Hospital’s Rules (l’Hospitalsche Regeln)). Let −∞ < a <
b < ∞ and let f, g : (a, b) → R be two differentiable functions with g′(x) 6= 0 for all
x ∈ (a, b). If
a) limx→a+ f(x) = 0 = limx→a+ g(x) or
b) limx→a+ f(x) =∞ = limx→a+ g(x),

and limx→a+
f ′(x)
g′(x)

exists, then limx→a+
f(x)
g(x)

exists as well, and we have

lim
x→a+

f(x)

g(x)
= lim

x→a+

f ′(x)

g′(x)
.

The corresponding result does also hold for x→ b−, x→∞ or x→ −∞.

Proof. To prove proposition a), we view f and g as continuous in a by setting
f(a) = g(a) = 0. By the generalized mean value theorem, for each x ∈ (a, b) there
exists a ξ ∈ (a, x) with

f(x)

g(x)
=
f(x)− f(a)

g(x)− g(a)
=
f ′(ξ)

g′(ξ)
.

If x→ a, it follows that ξ → a, which in turn entails the proposition.
For the case b) let q := limx→a

f ′(x)
g′(x)

. Then for each ε > 0 there exists a c ∈ (a, b) with

∣∣f ′(x)
g′(x)

− q
∣∣ ≤ ε, for all x ∈ (a, c).

Then, by the generalized mean value theorem,∣∣f(x)− f(y)

g(x)− g(y)
− q
∣∣ ≤ ε , x, y ∈ (a, c), x 6= y.
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Now fix y ∈ (a, c). Because limx→a g(x) = ∞ by assumption, there exists a c′ ∈ (a, c)
with ∣∣g(y)

g(x)

∣∣ ≤ ε and
∣∣f(y)

g(x)

∣∣ ≤ ε for all x ∈ (a, c′).

Thus, we have

∣∣f(x)

g(x)
− q
∣∣ =

∣∣(1− g(y)

g(x)
)(
f(x)− f(y)

g(x)− g(y)
− q) +

f(y)

g(x)
− q g(y)

g(x)

∣∣
≤ ε(2 + |q|+ ε)

for all x ∈ (a, c′), i.e. we have limx→a
f(x)
g(x)

= q = limx→a
f ′(x)
g′(x)

.
The remaining cases are proved analogously.

�

L’Hospital’s rules are often very convenient to calculate limits.

2.9 Examples. The following propositions hold.

a) lim
x→0

log(1+x)
x

2.8
= lim

x→0

1
1+x

1
= 1.

b) lim
x→∞

log x
xα

2.8
= lim

x→∞
1
x

1
αxα−1 = lim

x→∞
1

αxα = 0, α > 0.

c) lim
x→0

( 1
sinx
− 1

x
) = lim

x→0

x−sinx
x sinx

2.8
= lim

x→0

1−cosx
sinx+x cosx

2.8
= lim

x→0

sinx
cosx+cosx−x sinx

= 0.

We now consider derivatives of higher order. More precisely, let f : D ⊂ R → K
be a differentiable function. If f ′ is also differentiable, then f is called two times
differentiable and we call f ′′ := (f ′)′ the second derivative of f . More generally, one
defines the n-th derivative f (n) recursively as the derivative of f (n−1). For f (n), we also
write dnf

dxn or Dnf .

2.10 Definition. A function f : D ⊂ R → K is called n times continuously differen-
tiable if f is n times differentiable and the n-th derivative is still continuous.

Notation: f ∈ Cn(D,K).

The second derivative of a function can also be interpreted geometrically. For this,
we introduce the notion of a convex function.

2.11 Definition. If J ⊂ R is an interval, f : J → R a function, we call f convex
(konvex), if for all x1, x2 ∈ J and all λ ∈ (0, 1) we have

f((1− λ)x1 + λx2) ≤ (1− λ)f(x1) + λf(x2).
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The following theorem describes the relation between convex functions f and properties
of f ′.

2.12 Theorem. Let f : J ⊂ R → R be a differentiable function. Then f is convex
if and only if f ′ is monotone increasing.

Proof. =⇒: Let x, x1, x2 ∈ J with x1 < x < x2. We choose λ ∈ (0, 1) such
that x = (1 − λ)x1 + λx2. Because f is convex by assumption, we have f(x) ≤
(1− λ)f(x1) + λf(x2). Therefore,

f(x)− f(x1) ≤ λ [f(x2)− f(x1)]

f(x2)− f(x) ≥ (1− λ) [f(x2)− f(x1)]

and because of x− x1 = λ(x2 − x1) > 0 and x2 − x = (1− λ)(x2 − x1) > 0, it follows
for all x, x1 < x < x2 , that

f(x)− f(x1)

x− x1

≤ f(x2)− f(x1)

x2 − x1

≤ f(x2)− f(x)

x2 − x
, x1 < x < x2.

Therefore, we have

f ′(x1) = lim
x→x1+

f(x)− f(x1)

x− x1

≤ f(x2)− f(x1)

x2 − x1

≤ lim
x→x2−

f(x2)− f(x)

x2 − x
= f ′(x2),

thus f is increasing.
⇐=: The proof is similar to the preceding one and is left to the reader as an exercise.

�

2.13 Corollary. If f : (a, b)→ R is a two times differentiable function, we have

f is convex ⇐⇒ f
′′ ≥ 0 in (a, b).

2.14 Example. The function − log is convex on R+, because we have (log x)′′ =
− 1
x2 ≤ 0 for all x > 0. Functions f with the property “−f is convex” are called

concave (konkav). In particular, log is a concave function on R+.

Convex and concave functions are important notions in analysis and have interesting
applications. We consider in particular Young’s and Hölder’s inequalities. For p ∈
(1,∞), we call q ∈ (1,∞) with

1

p
+

1

q
= 1

the Hölder conjugate of p (zu p konjugierter Index) .



98 CHAPTER IV. DIFFERENTIAL CALCULUS IN ONE VARIABLE

2.15 Theorem (Young’s inequality). For 1 < p, q < ∞ with 1/p + 1/q = 1, we
have

ab ≤ 1

p
ap +

1

q
bq, a, b ≥ 0.

Proof. Let a > 0 and b > 0, otherwise the statement is trivial. Since log is a concave
function, it follows from the definition of convexity with λ = 1/p and (1 − λ) = 1/q,
that

log(
ap

p
+
bp

q
) ≥ 1

p
log ap +

1

q
log bq = log a+ log b = log(ab).

Because the exponential function is increasing, the proposition follows by applying the
exponential function on both sides of the above inequality.

�

For a vector x = (x1, x2, . . . , xn) ∈ Kn and p with 1 < p <∞, we define

||x||p :=
( n∑
j=1

|xj|p
) 1

p .

2.16 Corollary (Hölder’s Inequality). For 1 < p, q < ∞ with 1/p + 1/q = 1 and
x, y ∈ Kn, we have

n∑
j=1

|xjyj| ≤ ||x||p||y||q.

We observe that the special case p = q = 2 is precisely the Cauchy-Schwarz inequality
known from linear algebra.

Proof. W.l.o.g. let x, y 6= 0. Young’s equality above implies

|xj|
||x||p

|yj|
||y||q

≤ 1

p

|xj|p

||x||pp
+

1

q

|yj|q

||y||qq
.

Summing up yields
n∑
j=1

|xjyj|
||x||p||y||q

≤ 1

p
+

1

q
= 1,

which is equivalent to the assertion.
�
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3 Taylor’s theorem

The differential calculus, as presented previously, approximates a function, which is
differentiable at a, by an affine function, i.e., we have the representation

f(x) = f(a) + f ′(a)(x− a) +R(x)

of f as a sum of an affine function and an error term R(x) for which

lim
x→a

R(x)(x− a) = 0

holds. Now, we want to use polynomials instead of affine functions to get even more
accurate approximations. More precisely, for a given n times differentiable function f ,
we seek a polynomial p of degree at most n such that

p(a) = f(a), p′(a) = f ′(a), . . . , p(n)(a) = f (n)(a). (3.1)

Considering such a polynomial p(x) =
∑n

j=0 aj(x − a)j we get for its coefficients

a0, . . . , an , since p(k)(a) = k!ak,

ak =
fk(a)

k!
, k = 0, . . . , n.

That means that there exists exactly one polynomial of degree at most n for which
(3.1) holds, namely

(Tnf)(x, a) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + . . .+

f (n)(a)

n!
(x− a)n.

This motivates the following definition.

3.1 Definition. Let I ⊂ R be an interval, and f : I → R an n times differentiable
function and a ∈ I. Then we call Tnf the n-th Taylor polynomial (n-tes Taylorpolynom)
of f near a.

The question of how good f is approximated of course depends on the remainder term

(Rnf)(x, a) := f(x)− (Tnf)(x, a).

Taylor’s theorem provides a conclusive answer to this question.

3.2 Theorem (Taylor’s Theorem). Let I ⊂ R be an interval, a, x ∈ I with a 6= x.
Let k ∈ N and f : I → R be an (n+1) times continuously differentiable function. Then
there exists a ξ ∈ (min{a, x},max{a, x}) such that

f(x) =
n∑
j=0

f (j)(a)

j!
(x− a)j +

f (n+1)(ξ)

kn!

(
x− ξ
x− a

)n−k+1

(x− a)n+1.
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Proof. In the following, we will show that the remainder term of the approximation is
given by

(Rnf)(x, a) =
f (n+1)(ξ)

kn!

(
x− ξ
x− a

)n−k+1

(x− a)n+1

To this end we define functions g : J → R and h : J → R by

g(t) :=
n∑
j=0

f (j)(t)

j!
(x− t)j, h(t) := (x− t)k,

where J denotes the interval J := (min{a, x},max{a, x}). Then we have

g′(t) =
n∑
j=0

(f (j+1)(t)

j!
(x− t)j − f (j)(t)

j!
j(x− t)j−1

)
= f (n+1)(t)

(x− t)n

n!

and h′(t) = −k(x − t)k−1 for all t ∈ J. By the generalized mean value theorem, there
exists a ξ ∈ J with

g(x)− g(a)
h(x)− h(a)

=
g′(ξ)

h′(ξ)
.

Further, we have g(x)− g(a) = Rnf(x, a) and h(x)− h(a) = −(x− a)k and, therefore,

Rnf(x, a) =
f (n+1)(ξ)

kn!

(
x− ξ
x− a

)n−k+1

(x− a)n+1.

�

If we let k = n + 1 or k = 1 in the above theorem, we obtain the Lagrange form and
the Cauchy form of the remainder term, respectively.

3.3 Corollary. With the assumptions of the theorem, we have

Rnf(x, a) =
f (n+1)(ξ)

(n+ 1)!
(x− a)n+1 (Lagrange form of the remainder term)

and

Rnf(x, a) =
f (n+1)(ξ)

n!

(
x− ξ
x− a

)n
(x− a)n+1 (Cauchy form of the remainder term).

In the following, we consider an arbitrarily often differentiable function f on an interval
J ⊂ R. For a ∈ J we call

(Tf)(x, a) =
∞∑
n=0

f (n)(a)

n!
(x− a)n = lim

n→∞
(Tnf)(x, a)

the Taylor series (Taylorreihe) of f in a.
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It is now natural to ask the following questions:

a) Does the Taylor series converge, and if yes, to which value?

b) Does the Taylor series converge to f at least in a neighbourhood of a?

A first answer to question b) is given by the following Theorem:

3.4 Theorem. Let f : J → R be an arbitrarily often differentiable function and
x, a ∈ J . Then we have

(Tf)(x, a) = f(x) ⇐⇒ lim
n→∞

Rnf(x, a) = 0.

Of course, this theorem follows directly from Taylor’s theorem (3.2) and the defi-
nition of convergence of a series. At first sight, the statement of this theorem seems
quite banal; however there exist functions f for which lim

n→∞
Rnf(x, a) exists, but is not

equal to 0. In this case, the Taylor series converges at the point x, but not to f(x)! In
the following example, we explicitly state such a function.

3.5 Example. Consider the function f : R→ R, given by

f(x) :=

{
e−

1
x2 , x 6= 0
0, x = 0.

Then f is arbitrarily often differentiable on R and we have f (n)(0) = 0 for all n ∈ N0

(compare with the exercises). Therefore, we have

∞∑
n=0

f (n)(0)

n!
xn = 0 for all x ∈ R, but f(x) 6= 0 for x 6= 0.

A sufficient criterion for the convergence of the Taylor series to f is given by the
following corollary.

3.6 Corollary. Let f : J → R be an arbitrarily often differentiable function and
x, a ∈ J . Assume there exists an M > 0 with

sup
n∈N0

max
ξ∈[a,x]

|f (n)(ξ)| ≤M or sup
n∈N0

max
ξ∈[x,a]

|f (n)(ξ)| ≤M.

Then we have

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n.
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The proof is easy. Since we have

|(Rnf)(x, a)| = |f
(n+1)(ξ)

(n+ 1)!
(x− a)n+1| ≤ M |x− a|n+1

(n+ 1)!

n→∞−→ 0,

the claim follows from 3.4.

We further exemplify the theorem using some examples.

3.7 Examples. a) We have

ex =
∞∑
n=0

xn

n!
, x ∈ R,

because the exponential function is arbitrarily often differentiable on R, and we have
f (n)(x) = ex for all x ∈ R and for all n ∈ N. Therefore we have

f (0)(0)

0!
= 1,

f (n)(0)

n!
=

1

n!
, (Tnf)(x, 0) =

n∑
j=0

xj

j!

and furthermore

max
ξ∈[0,x]

|f (n)(ξ)| = ex, max
ξ∈[x,0]

|f (n)(ξ)| = 1, x ∈ R

for all n ∈ N. Corollary 3.6 therefore implies the proposition.

b) For x ∈ (−1, 1], we have:

log(1 + x) =
∞∑
n=1

(−1)n+1 x
n

n
.

For the proof consider f(x) := log(1 + x) for all x > −1. Then, f is arbitrarily often
differentiable and we have

f (n)(x) =
(n− 1)!(−1)n+1

(1 + x)n
,

f (0)(0)

0!
= 0,

f (n)(0)

n!
=

(−1)n+1

n
, n ∈ N,

and therefore

Tnf(x, 0) =
n∑
j=1

(−1)j+1

j
xj.

The Lagrange form of the remainder term for x ∈ [0, 1] is

Rnf(x, 0) =
f (n+1)(ξ)xn+1

(n+ 1)!
=

(−1)nxn+1

(1 + ξ)n+1(n+ 1)
for some ξ ∈ (0, 1).
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Therefore, we have |Rnf(x, 0)| ≤ 1
n+1
| x
1+ξ
|n+1 ≤ 1

n+1
, and thus

Rnf(x, 0)
n→∞−→ 0, x ∈ [0, 1].

If −1 < x < 0, we use the Cauchy form of the remainder term to deduce that

Rnf(x, 0) =
f (n+1)(ξ)

n!

(
x− ξ
x

)n
xn+1 =

n!(−1)n

(1 + ξ)n+1n!
xn+1

(
x− ξ
x

)n
,

and therefore

|Rnf(x, 0)| = |x− ξ|n

|1 + ξ| |1 + ξ|n
|x|.

If ξ ∈ (x, 0) we have ξ − x = ξ + 1− (x+ 1), thus |x−ξ
1+ξ
| = ξ−x

1+ξ
= 1− 1+x

1+ξ
< 1, hence

|Rnf(x, 0)| n→∞−→ 0.

In particular, for x = 1 we have

ln(x+ 1) = ln 2 =
∞∑
n=1

(−1)n−1

n
= 1− 1

2
+

1

3
− 1

4
+ . . . ,

which gives us an explicit value for the alternating harmonic series.

Furthermore, Taylor’s theorem gives a sufficient criterion to determine local extrema.

3.8 Theorem ( Sufficient criteron for local extrema). Let n ∈ N be odd, J ⊂ R
be an interval. Assume that f : J → R is an (n+ 1)-times continuously differentiable
function with

f ′(a) = . . . = f (n)(a) = 0, and f (n+1)(a) 6= 0, a ∈ J.

Then the following statements hold:

a) If f (n+1)(a) > 0, then f has a local minimum at a.

b) If f (n+1)(a) < 0, then f has a local maximum at a.

Proof. Let f (n+1)(a) > 0. Since f (n+1) is continuous on J by assumption, there exists a
neighbourhood Uδ(a) ⊂ J of a with f (n+1)(x) > 0 for all x ∈ Uδ(a). Taylor’s theorem
with the Lagrange form of the remainder term implies that there exists a ξ ∈ Uδ(a)
with

f(x) = f(a) +

>0︷ ︸︸ ︷
f (n+1)(ξ)

(n+ 1)!
(x− a)n+1 > f(a) for all x ∈ Ua,

which is just the proposition. For the case f (n+1)(a) < 0, the proof is analogous.
�
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We conclude this section by showing how to find approximations for the roots of differ-
entiable functions. To this end we at first consider an affine approximation of f given
by F (x) = f(x0) + f ′(x0)(x− x0). Geometrically, this is the tangent to f at the point
x0 . If f ′(x0) 6= 0, we let

x1 := x0 −
f(x0)

f ′(x0)
,

thus x1 is the root of the tangent. If x1 ∈ Df , we proceed by the same pattern and

set x2 := x1 − f(x1)
f ′(x1)

. More general, we define the (n+ 1)-th iteration as

xn+1 = xn −
f(xn)

f ′(xn)
, n = 0, 1, 2, . . . .

This technique to approximate a root of a given function is called Newton’s method.

3.9 Theorem (Convergence of Newton’s method). Let f : [a, b]→ R be a twice
continuously differentiable function and assume that

a) f has a root ξ in [a, b],

b) f ′(x) 6= 0 for all x ∈ [a, b],

c) f is convex or concave on [a, b],

d) We have x0 − f(x0)
f ′(x0)

∈ [a, b] for x0 = a and x0 = b.

Then Newton’s method converges for each x0 ∈ [a, b] monotonously to ξ and we have
the estimate

|xk − ξ| ≤
M

2m
|xk − xk−1|2, k ∈ N,

where m := min{|f ′(τ)| : τ ∈ [a, b]} and M := max{|f ′′(τ)| : τ ∈ [a, b]}.

The above estimate means that Newton’s method has a quadratic rate of convergence.

Proof. We note that by b) f is strictly monotone, hence ξ is the only root of f in the
interval [a, b] . We distinguish the four cases

f ′ > 0, f ′′ ≥ 0 f ′ < 0, f ′′ ≥ 0

f ′ > 0, f ′′ ≤ 0 f ′ < 0, f ′′ ≤ 0

and prove only the first one in detail. The proof of the other cases is analogous.

We define an auxiliary function ϕ : [a, b]→ R by

ϕ(x) := x− f(x)

f ′(x)
.
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Then

ϕ′(x) = 1− f ′(x)2 − f(x)f ′′(x)

f ′(x)2
=
f(x)f ′′(x)

f ′(x)2
=

{
≤ 0, x ∈ [a, ξ]
≥ 0, x ∈ [ξ, b]

where the inequalities follow from the facts that f is increasing, f(ξ) = 0, and f ′′ ≥ 0.
Furthermore, ϕ(ξ) = ξ is a minimum of ϕ in [a, b]. By hypothesis d), it therefore
follows that ϕ(x) ∈ [ξ, b] for all x ∈ [a, b] and we have ϕ(x) ≤ x for all x ∈ [ξ, b] (by
definition of ϕ since we are considering the first case). We now set

xk+1 := ϕ(xk) = xk −
f(xk)

f ′(xk)
.

Then we have x1 ∈ [ξ, b] and xk ∈ [ξ, b] implies ξ ≤ xk+1 ≤ xk. Hence, (xk)k∈N is a
bounded decreasing sequence with a limit ω. Since in particular ϕ is continuous, we
have by the preceding formula (when k →∞)

ω = ω − f(ω)

f ′(ω)
⇒ f(ω) = 0 ⇒ ω = ξ .

To prove the error estimate, we use the mean value theorem and obtain∣∣∣∣f(xk)− f(ξ)

xk − ξ

∣∣∣∣ ≥ m,

what in turn implies |xk − ξ| ≤ |f(xk)|
m

. Using Taylor’s theorem at the point a = xk−1

with the Lagrange form of the remainder term, we can estimate |f(xk)| by observing

f(xk) = f(xk−1) + f ′(xk−1)(xk − xk−1)︸ ︷︷ ︸
=0 by Construction

+
1

2
f ′′(x̃)(xk − xk−1)

2

for some x̃ ∈ (xk−1, xk). Therefore we have |f(xk)| ≤ M
2

(xk − xk−1)
2 and thus

|xk − ξ| ≤
M

2m
|xk − xk−1|2.

�
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4 Convergence of Sequences of Functions

In analysis, methods to approximate functions f by sequences (fn)n∈N of functions with
certain, often “better” properties than f , are of central importance. Our construction of
the integral in the following chapter, for example, uses such an approximation method.

We start this section by considering a sequence (fn)n∈N of functions fn : D → K
with a common domain D ⊂ R. We call the sequence (fn)n∈N pointwise convergent on
D , if for each (fixed) x ∈ D the sequence (fn(x))n∈N converges in K. By

f(x) := lim
n→∞

fn(x)

we can define a limit function f : D → K. It is natural to ask the following questions:

a) Are central properties of the functions fn, such as continuity and differentiability,
transferred to f?

b) If so, is it possible to compute the derivative f ′ of the limit function from the
derivatives of the functions fn?

If the functions fn are continuous at x0 ∈ D then the limit function f is continuous at
x0 ∈ D, if and only if we have limx→x0 f(x) = f(x0), i.e. if and only if

lim
x→x0

lim
n→∞

fn(x) = lim
n→∞

lim
x→x0

fn(x).

The question about the continuity of limit functions therefore leads us naturally to the
problem of interchanging limits. In the following, we show that such limits cannot be
interchanged in general.

4.1 Examples.
a) Let D = [0, 1], and fn(x) = xn for all x ∈ [0, 1] and all n ∈ N. Then the functions
fn are continuous on D for all n ∈ N. However the limit function f , given by

f(x) =

{
0, x ∈ [0, 1)
1, x = 1,

is not continuous at x = 1.

b) Let again D = [0, 1] and gn(x) = sinnx√
n

for all n ∈ N. The limit function is g ≡ 0

with derivative g′ ≡ 0. On the other hand, we have g′n(x) =
√
n cosnx for all n ∈ N

and the sequence g′n(x) diverges at each point x ∈ D.
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4.2 Definition. Let D ⊂ R be an arbitrary set and fn : D → K for all n ∈ N. The
sequence (fn)n∈N is called uniformly convergent on D to f : D → K, if for each ε > 0,
there exists a N0 ∈ N with

|f(x)− fn(x)| < ε for all x ∈ D, n ≥ N0,

or reformulated,

(∀ ε > 0) (∃N0 ∈ N) (∀n ≥ N0) (∀x ∈ D) |f(x)− fn(x)| < ε

4.3 Remarks. a) Of course, a sequence (fn) of functions that converges uniformly to
f , also converges pointwise to f . The converse, however, is wrong in general.

b) If we let
‖f‖∞ := sup

x∈D
|f(x)|,

then (fn)n∈N converges uniformly to f if and only if we have

‖fn − f‖∞
n→∞−→ 0

c) For the function sequences of the above examples a) and b) we have ‖fn− f‖∞ = 1
and ‖gn − g‖∞ = 1/

√
n for all n ∈ N, respectively. Clearly (gn) converges uniformly

on [0, 1] to g ≡ 0.
However, the sequence (fn)n∈N from example a) does not converge uniformly on [0, 1],
because otherwise, for given ε = 1

4
, there would exist a global N0 such that xn < 1

4
for

all x ∈ [0, 1) and all n ≥ N0 , but ((1 + 1
n
)−1)n ≥ 1/3 for all n ∈ N. Contradiction!

d) The difference between pointwise and uniform convergence can be described as
follows: In the case of pointwise convergence, if we consider an x ∈ D, then for each
ε > 0, there exists a number N = N(ε, x) such that |fn(x)− f(x)| < ε for all n ≥ N .
Here, the number N(ε, x) may depend on x. For uniform convergence, there is for each
ε > 0 a universal number N = N(ε) such that for all n > N(ε) and all x ∈ D we have
|fn(x)− f(x)| < ε.

e) For x > 0 and n ∈ N consider fn(x) = 1
nx

.This sequence of functions converges
pointwise to 0. It does not converge uniformly on its domain (0,∞) (consider xn =
1/n > 0), however it does converge uniformly on [a,∞) for each a > 0.

The following theorem gives – in analogy to the treatment for series – an inner criterion
for the uniform convergence of a function sequence which does not presuppose the
knowledge of the limit function.

4.4 Theorem (Cauchy criterion for uniform convergence). A sequence (fn)n∈N
of functions fn : D → K converges uniformly if and only if for all ε > 0, there exists
an N0 ∈ N with

‖fn − fm‖∞ < ε for all n,m ≥ N0.
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Proof. =⇒: Assume that the sequence (fn)n∈N converges uniformly to the limit function
f . Then there exists, to each ε > 0 an N0 with ‖fn − f‖∞ < ε

2
for all n > N0. This

implies
‖fn − fm‖∞ ≤ ‖fn − f‖+ ‖f − fm‖∞ < ε for all n,m ≥ N0.

⇐=: The assumption implies that (fn(x))n∈N is a Cauchy sequence in K for each x ∈ D.
Since K is complete, there is a unique pointwise limit f(x) = limn→∞ fn(x).
To show that the sequence (fn)n∈N converges uniformly to f , let ε > 0. We have to
prove the existence of an N0 such that |fn(x)−f(x)| < ε for all n ≥ N0. By assumption
there is an N0 such that |fn(x)− fm(x)| < ε/2 for all x ∈ D and all n,m ≥ N0. Hence,
if we let m→∞, we get – as required – for all n > N0

|fn(x)− f(x)| = lim
m→∞

|fn(x)− fm(x)| ≤ ε/2 < ε, x ∈ D.

�
In the following, we consider in detail the initially posed question, under which

conditions certain properties of the functions fn, such as continuity, boundedness and
differentiability, are passed on to the limit function f . We begin with the property of
boundedness.

4.5 Lemma. Let fn : D → K be bounded functions for all n ∈ N. If the sequence
(fn)n∈N converges uniformly on D to a function f , then f is bounded on D as well.

Proof. For ε = 1, there exists an N1 ∈ N such that |f(x)− fN1(x)| < 1 for all x ∈ D.
By assumption, there exists furthermore a constant MN1 with |fN1(x)| ≤ MN1 for all
x ∈ D. Hence,

|f(x)| ≤ |f(x)− fN1(x)|︸ ︷︷ ︸
<1

+ |fN1(x)|︸ ︷︷ ︸
≤MN1

≤ 1 +MN1 for all x ∈ D.

�

The following result says that the property of continuity of an approximating sequence
of functions (fn)n∈N is inherited to the limit function f , provided the convergence is
uniform.

4.6 Theorem. [Uniform limit of continuous functions is continuous] Assume that
D ⊂ R and fn : D → K are continuous functions for all n ∈ N. If (fn)n∈N converges
uniformly to f : D → K, then f is continuous. In other words, uniform limits of
continuous functions are continuous.

Proof. Let x0 ∈ D and ε > 0. Since (fn)n∈N converges uniformly to f , there exists an
N0 ∈ N with |fN0(x)−f(x)| < ε

3
for all x ∈ D. Furthermore, because fN0 is continuous

by assumption, there exists a δ > 0 with

|fN0(x)− fN0(x0)| <
ε

3
for all x ∈ Uδ(x0) ∩D.
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Therefore,

|f(x)− f(x0)| ≤ |f(x)− fN0(x)|︸ ︷︷ ︸
< ε

3

+ |fN0(x)− fN0(x0)|︸ ︷︷ ︸
< ε

3

+ |fN0(x0)− f(x0)|︸ ︷︷ ︸
< ε

3

≤ ε

for all x ∈ Uδ(x0) ∩D.
�

The above Example 4.1 b) shows that there can’t be a result analogous to Theorem 4.6
for differentiable functions, i.e. uniform limits of differentiable functions are not nec-
essarily differentiable.

Rather, in this situation, we have to require uniform convergence of the sequence
(f ′n)n∈N. This is made precise in the following theorem.

4.7 Theorem. Let a, b ∈ R with a < b and let fn : [a, b] → K be continuously differ-
entiable functions for all n ∈ N, having the following properties:

a) The sequence (fn(c))n∈N ⊂ K converges for some c ∈ [a, b].

b) There is a function f ∗ : [a, b] → K, such that the sequence (f ′n)n∈N converges uni-
formly on [a, b] to f ∗.

Then the sequence (fn)n∈N converges uniformly. The limit function f is differentiable,
and f ′ = f ∗.

Proof. We divide the proof in three steps:
Step 1: First of all, we show that the sequence (fn)n∈N converges uniformly. Indeed,

|fn(x)− fm(x)| ≤ |fn(x)− fm(x)− [fn(c)− fm(c)]|+ |fn(c)− fm(c)|

for all n,m ∈ N and all x ∈ [a, b]. The mean value theorem applied to the first term
on the right hand side yields

|fn(x)− fm(x)| ≤ |f ′n(ξ)− f ′m(ξ)||x− c|+ |fn(c)− fm(c)| for some ξ ∈ (a, b).

For ε > 0, there exists by assumptions a) and b) an N0 with

‖f ′n − f ′m‖∞ ≤
ε

2(b− a)
, for all n,m ≥ N0

and |fn(c)− fm(c)| ≤ ε
2

for all n,m ≥ N0. Therefore,

|fn(x)− fm(x)| ≤ ε

2(b− a)
(b− a) +

ε

2
= ε for all x ∈ [a, b].

Now the claim follows from the Cauchy criterion 4.4.
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Step 2: We define
f := lim

n→∞
fn.

Then fn converges uniformly to f by step 1. Moreover, by Theorem 4.6, the limit
function f is continuous on [a, b] and the same is true for f ∗ := limn→∞ f ′n.

Step 3: We show that the limit function f is differentiable and that we have f ′ = f ∗.
For this, we consider the functions gn : [0, 1]→ K, given by

gn(t) = fn(x0 + t(x− x0))− tf ′n(x0)(x− x0).

for x, x0 ∈ [a, b]. By the mean value theorem, we have gn(1)− gn(0) = g′n(ξ) for some
ξ ∈ (0, 1). Therefore, we have

gn(1)−gn(0) = fn(x)−fn(x0)−f ′n(x0)(x−x0) = g′n(ξ) = [f ′n(x0+ξ(x−x0))−f ′n(x0)](x−x0),

and thus, for n→∞,

f(x)− f(x0)− f ∗(x0)(x− x0) = [f ∗(x0 + ξ(x− x0))− f ∗(x0)](x− x0) =: ϕ(x)(x− x0).

Now f ∗ is continuous by step 2, and we have

lim
x→x0

ϕ(x) = lim
x→x0

f ∗(x0 + ξ(x− x0))− f ∗(x0) = 0.

Therefore, f is differentiable in x0 by Theorem 1.3, and we have f ′(x0) = f ∗(x0).
�

4.8 Examples.
a) Let D = R and define fn as

fn(x) =


−1, x < −π

n

sin nx
2
, −π

n
≤ x ≤ π

n

1, π
n
< x.

Then the functions fn are continuous for all n ∈ N, but the limit function f , given
by

f(x) =


+1, x > 0

0, x = 0
−1, x < 0

is discontinuous at x = 0. Therefore, the sequence (fn)n∈N does not converge uniformly
to f .

b) For n ∈ N, consider the functions fn : R → R given by fn(x) = 1
n

sin(n2x). Then
the sequence (fn)n∈N converges uniformly to f ≡ 0, because we have sin(n2x) ≤ 1 for
all n ∈ N and all x ∈ R. Therefore, f ′ ≡ 0 as well. On the other hand, the sequence
(f ′n)(x) = (n cos(n2x))n∈N is divergent for all x ∈ R. This means that the assumption
b) of Theorem 4.7 is indispensable.
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To conclude this section, we consider criteria for the uniform convergence of series of
functions.

4.9 Theorem (Weierstraß M-test (Weierstraßsches Konvergenzkriterium)).
Let fn : D → K for n ∈ N be a sequence of functions with

∑∞
n=0 ‖fn‖∞ < ∞. Then

the series of functions
∑∞

n=0 fn converges uniformly, i.e., the sequence of partial sums
converges uniformly.

The proof is left as an exercise.

The above criterion has important applications for power series. In particular, we have
the following corollary.

4.10 Corollary. A power series
∑∞

n=0 anx
n with radius ρ > 0 of convergence converges

absolutely and uniformly on Ur(0) := {z ∈ C : |z| ≤ r} for each r ∈ (0, ρ).

Indeed, we know from earlier results about power series that
∑∞

n=0 |an|rn converges.

Considering the function fn : Ur(0) → C given by fn(x) := anx
n, we know that

‖fn‖∞ ≤ |an|rn and the claim follows from the Weierstraß M-test 4.9.

An immediate consequence is that power series define continuous functions in the
interior of their disc of convergence.

4.11 Corollary. A power series with radius ρ > 0 of convergence defines a continuous
function on Uρ(0).

4.12 Examples. a) The series
∞∑
n=1

cos(nx)

n2

converges absolutely and uniformly on R, because we have | cos(n·x)
n2 | ≤ 1

n2 for all x ∈ R.

b) The Riemann Zeta function ζ, given by

ζ(z) :=
∞∑
n=1

1

nz

converges absolutely and uniformly on the set {z ∈ C : <z ≥ α} when α > 1, since
| 1
nz | = | 1

n<z | ≤ 1
nα .

Finally we consider the question whether a function that is given by a power series is
differentiable. We begin with a lemma.



112 CHAPTER IV. DIFFERENTIAL CALCULUS IN ONE VARIABLE

4.13 Lemma. Let
∑∞

n=0 anx
n be a power series with radius % > 0 of convergence.

Then the formal derivative
∞∑
n=1

nanx
n−1

has radius % of convergence.

The proof is left as an exercise.

4.14 Theorem. Let f(x) =
∑∞

n=0 anx
n be a power series with radius ρ > 0 of conver-

gence. Then f : (−%, %)→ K is differentiable and we have

( ∞∑
n=0

anx
n
)′

= f ′(x) =
∞∑
n=1

nanx
n−1 =

∞∑
n=0

(anx
n)′, x ∈ (−%, %),

i.e. power series can be differentiated termwise.

The proof is a consequence of Corollary 4.10 and Theorem 4.7.

For |x| < 1 consider the following example:

∞∑
n=1

nxn = x
∞∑
n=1

nxn−1 = x
d

dx

∞∑
n=0

xn = x
d

dx

1

(1− x)
=

x

(1− x)2
.

If we iterate the statement of the above theorem, we obtain the following strengthening
of Theorem 4.14.

4.15 Corollary. Let f(x) =
∑∞

n=0 anx
n be a power series with radius ρ > 0 of

convergence. Then f : (−%, %)→ K is arbitrarily often differentiable and we have

an =
f (n)(0)

n!
for all n ∈ N0.

We conclude the section with Abel’s theorem, which we cite without proof.

4.16 Theorem (Abel’s theorem (Abelscher Grenzwertsatz)). Let
∑∞

n=0 an be
a convergent series. Then the power series

f(x) :=
∞∑
n=0

anx
n

converges uniformly for x ∈ [0, 1] and therefore defines a continuous function f :
[0, 1]→ K.



4. CONVERGENCE OF SEQUENCES OF FUNCTIONS 113

4.17 Example. We calculate the power series expansion of the arctan-function, given
by

arctan(x) =
∞∑
n=0

(−1)n
x2n+1

2n+ 1
, x ∈ (−1, 1).

The series
∑∞

n=0 (−1)n 1
2n+1

converges by the Leibniz criterion. Therefore, by Abel’s
theorem we have

π

4
III.4
= arctan(1)

Abel
=

∞∑
n=0

(−1)n
1

2n+ 1
= 1− 1

3
+

1

5
− 1

7
+ · · ·
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Chapter V

Integration in one Variable

The calculation of areas, volumes, and lengths of curves belongs to the oldest math-
ematical problems. Today these questions — having remained as relevant as ever —
form the central motivations for modern integration theory.

To ARCHIMEDES (287-212 B.C.), it was evident, that a figure that is bounded
by curved lines has a well defined area. To determine this area, it was approximated
‘from inside’ and ‘from outside’ by easier objects with known area.

The systematic investigation of the integral concept began only much later with the
discovery of the connection between differentiation and integration by G.W. LEIBNIZ
(1646-1716) and I. NEWTON (1642-1727) in the 17th century. A. L. CAUCHY, in
his famous textbook Calcul infinitésimal, was the first to point out the necessity of
a definition of the integral and, building on this, of a development of the theory of
integration. B. RIEMANN (1826-1866) extended this concept to a bigger class of
functions. A different, but very general concept of integral was finally introduced by
H. L. LEBESGUE in the year 1902. We will examine Lebesgue’s integral intensively
in the lecture Analysis IV.

In this chapter, we restrict our attention at first on the integral for so-called jump
continuous functions, a less general class of functions than that of Riemann integrable
functions. The advantage of this approach is that we can first define the integral directly
for so-called step functions and later extend this definition — via an approximation
process — to more general functions.

We begin this chapter in Section 1 by defining step functions and jump continuous
functions. The approximation theorem of jump continuous functions by step functions
is the main result of this section and is the basis of our approach to the integral.
Section 2 is devoted to the fundamental theorem of calculus and to the comparison of
of our concept of integral with the so-called Riemann integral. Afterwards, in Section 3,
we consider classical integration techniques such as partial integration and substitution,
before we consider improper integrals in the last section.

115
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1 Step functions and jump continuous functions

In this section, a and b are always real numbers with a < b, and I denotes the compact
interval I := [a, b]. We begin with the notion of a partition of the interval I.

1.1 Definition. a) We call Z := (x0, . . . , xn) a partition of I, if

a = x0 < x1 < x2 < . . . < xn = b

holds.

b) A partition Z := (y0, . . . , yk) is called refinement of Z , if {x0, . . . , xn} ⊂ {y0, . . . , yk}.
If this is the case, we also write Z ⊂ Z.

c) A function f : I → K is called step function (Treppenfunktion), if there exists a
partition Z = (x0, . . . , xn) of I, such that f is constant on all intervals (xj−1, xj),
where j = 1, . . . , n.

d) A function f : I → K is called jump continuous (sprungstetig) on I, if

i) f has one sided limits from the left and from the right at each c ∈ (a, b), i.e., the
limits

lim
x→c−

f(x) and lim
x→c+

f(x)

exist, and,

ii) f has a limit from the right at a and a limit from the left at b.

1.2 Remarks. a) The set of step functions

T ([a, b],K) := {ϕ : [a, b]→ K : ϕ is a step function on [a, b]}

as well as the set of jump continuous functions

S([a, b],K) := {ϕ : [a, b]→ K : ϕ is jump continuous on [a, b]}

are vector spaces over K. Further, T ([a, b],K) is a linear subspace of S([a, b],K).

b) Every continuous function on [a, b] is jump continuous.

c) Every monotone function on [a, b] is jump continuous.

d) If we define

C([a, b],K) := {f : [a, b]→ K : f is continuous on [a, b]},
C1([a, b],K) := {f : [a, b]→ K : f is continuously differentiable on [a, b]},
B([a, b],K) := {f : [a, b]→ K : f is bounded on [a, b]},

then C([a, b],K), C1([a, b],K) and B([a, b],K) are also vector spaces over K and we
have

C1([a, b],K) ⊂ C([a, b],K) ⊂ S([a, b],K) ⊂ B([a, b],K),

where the inclusions are linear subspace inclusions.
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We now define the integral for step functions.

1.3 Definition. Let f : [a, b]→ K be a step function and Z = (x0, . . . , xn) a partition
of I. Furthermore assume that f(x) = cj for all x ∈ (xj−1, xj) and all j = 1, . . . , n.
Then ∫

Z

f :=
n∑
j=1

cj(xj − xj−1)

is called the integral of f (with respect to Z).

First of all, we have to show that the integral
∫
Z
f of a function f depends only on f

and not on the chosen partition Z.

1.4 Lemma. Let Z and Z ′ be partitions of I and assume that f is a step function with
respect to Z as well as Z ′. Then we have∫

Z

f =

∫
Z′
f.

Proof. We prove the claim first for pairs of partitions partitions where one is a re-
finement of the other. In particular, consider the partitions Z = (x0, . . . , xn) and
Z ′ = (x0, . . . , xk, y, xk+1, . . . , xn) of I. Then we have∫

Z

f =
n∑
j=1

cj(xj − xj−1)

=
k∑
j=1

cj(xj − xj−1) + ck+1(xk+1 − xk)︸ ︷︷ ︸
=ck+1(xk+1−y)+ck+1(y−xk)

+
n∑

j=k+2

cj(xj − xj−1) =

∫
Z′
f.

If Z ′ is an arbitrary refinement of Z, then the claim follows by iteration of the above
argument. If Z and Z ′ are arbitrary partitions of I, then Z ∪ Z ′ is a refinement of Z
as well as Z ′. Therefore, ∫

Z

f =

∫
Z∪Z′

f =

∫
Z′
f.

�

The above Lemma implies that we can now define the integral of a step function as∫
I

f :=

∫ b

a

f(x)dx :=

∫
I

f dx :=

∫
f :=

∫
Z

f.

The following properties of the inegral are immediately evident.
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1.5 Lemma. Assume that ϕ, ψ ∈ T ([a, b],K) and α, β ∈ K. Then the following
propositions hold:

a)
∫
I
(αϕ+ βψ) = α

∫
I
ϕ+ β

∫
I
ψ (Linearity of the integral).

b) |
∫
I
ϕ| = |

∫ b
a
ϕ(x)dx| ≤ (b− a)‖ϕ‖∞.

c) If ϕ and ψ are real valued with ϕ ≤ ψ, we have
∫
I
ϕ ≤

∫
I
ψ (Monotonicity of

the integral).

In the following our aim is to extend the integral — which we have only defined for
step functions up to now — to jump continuous functions in such a way that the above
properties of the integral are preserved. To this end, the following approximation
theorem for jump continuous functions is crucial.

1.6 Theorem. (Approximation theorem for jump continuous functions). A func-
tion f : [a, b] → K is jump continuous on [a, b] if and only if there exists a sequence
(ϕn)n∈N ⊂ T ([a, b],K) of step functions on [a, b] such that (ϕn)n∈N converges uniformly
on [a, b] to f , i.e. if ‖f − ϕn‖∞

n→∞−→ 0 holds.

Proof. =⇒: Let f ∈ S([a, b],K) be a jump continuous function and n ∈ N. Then for
all x ∈ I = [a, b] there exist real numbers αx and βx with αx < x < βx and

|f(s)− f(t)| < 1

n
, s, t ∈ (αx, x) ∩ I or s, t ∈ (x, βx) ∩ I.

Now the set {(αx, βx) : x ∈ I} is an open cover of the compact interval [a, b]. Therefore
there exists a finite subcover of I, i.e. there exist x0 < x1 < . . . < xm with I ⊂⋃m
j=0(αxj

, βxj
). If we set y0 := a, yj+1 := xj for j = 0, . . . ,m, as well as ym+2 := b,

we obtain a partition Z0 = (y0, . . . , ym+2) of I. Now we choose a refinement Z1 =
(z0, . . . , zk) of Z0 with

|f(s)− f(t)| < 1

n
, s, t ∈ (zj−1, zj), j = 1, . . . , k

(from the construction of Z0 it follows that this property can be obtained by inserting
at most one additional point between each pair (yj−1, yj) of points of Z0) and define
the function ϕn approximating the function f by

ϕn(x) :=

{
f(x), x ∈ {z0, . . . , zk}
f(

zj−1+zj

2
), x ∈ (zj−1, zj), j = 1, . . . , k.

Then ϕn is a step function on [a, b] for each n ∈ N and by construction we have
|f(x)− ϕn(x)| < 1

n
for all x ∈ I, i.e. we have ‖f − ϕn‖∞ < 1

n
for all n ∈ N.
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⇐=: By assumption, ϕn ∈ T ([a, b],K) and we have ‖ϕn − f‖∞ < 1
n

for all n ∈ N. We
have to show that f is jump continuous. For ε > 0 we choose n ∈ N in such a way that
we have |f(x) − ϕn(x)| < ε

2
for all x ∈ I. Further, since ϕn is a step function, there

exists for all x ∈ (a, b] an a′ ∈ [a, x) with ϕn(s) = ϕn(t) for all s, t ∈ (a′, x). Therefore
we have

|f(s)− f(t)| ≤ |f(s)− ϕn(s)|+ |ϕn(t)− f(t)| < ε, for all s, t ∈ (a′, x).

Now assume that (sj)j∈N ⊂ I is such that sj → x− . Then there exists an N ∈ N such
that sj ∈ (a′, x) for all j ≥ N and thus

|f(sj)− f(sk)| < ε, for all j, k ≥ N.

Thus, (f(sj))j∈N is a Cauchy sequence with limj→∞ f(sj) = r. If (tk)k∈N is another
sequence as above, we have limn→∞ f(tn) = r′. But since |f(sj) − f(tk)| < ε for all
j, k > N , we have r = r′, and thus the limit from the left, limy→x− f(y), exists.
The proof for the limit from the right is analogous.

�

1.7 Corollary. A function f : [a, b] → K is jump continuous if and only if it can be
written as

f =
∞∑
n=1

ϕn with ϕn ∈ T ([a, b],K) such that
∞∑
n=1

‖ϕn‖∞ <∞ holds.

Proof. =⇒: By the above Theorem 1.6 we can choose a function ψn ∈ T ([a, b],K)
for each n ∈ N in such a way that ‖f − ψn‖∞ ≤ 1

2n . If we further set ϕ1 := ψ1 and
ϕk := ψk − ψk−1 for k ≥ 2, we have

|f(x)−
n∑
j=1

ϕj(x)| = |f(x)− ψn(x)| ≤ ‖f − ψn‖∞ ≤
1

2n
,

and therefore
∑∞

j=1 ϕj(x) = f(x) for all x ∈ [a, b]. Further we have

‖ϕj‖∞ ≤ ‖ψj − f‖∞︸ ︷︷ ︸
≤ 1

2j

+ ‖f − ψj−1‖∞︸ ︷︷ ︸
≤ 1

2j−1

=
3

2j
,

and thus
∑∞

n=1 ‖ϕn‖∞ <∞.

⇐=: For n ∈ N we define ψn :=
n∑
j=1

ϕj. Then ψn ∈ T ([a, b],K) for all n ∈ N and we

have

‖f − ψn‖∞ = ‖f −
n∑
j=1

ϕj‖∞ = ‖
∞∑

j=n+1

ϕj‖∞ ≤
∞∑

j=n+1

‖ϕj‖∞
n→∞−→ 0.
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Thus, the claim follows from Theorem 1.6
�

1.8 Corollary. A jump continuous function f ∈ S([a, b],K) has at most countably
many points of discontinuity. This holds in particular for monotone functions.

Proof. By the above Theorem 1.6, we can express f as a limit of a sequence (ϕn)n∈N
of step functions. By unfolding the ε-δ-definition of continuity, and applying a ε

3
-

argument, it is easy to see that f is continuous at a given x whenever all ϕn are
continuous at x. Thus, the points of discontinuity of f are contained in the union of
the sets of points of discontinuity of all ϕn. This is a countable union of finite sets,
hence at most countable.

�
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2 The integral and its properties

In this section, let again a, b ∈ R with a < b and I = [a, b]. We consider the following
situation: Let f ∈ S([a, b],K) be a jump continuous function which is approximated
uniformly by a sequence (ϕn)n∈N ⊂ T ([a, b],K) of step functions, as described in The-

orem 1.6; i.e. we have ‖f − ϕn‖∞
n→∞−→ 0. If we set In :=

∫ b
a
ϕn, we have

|In − Im|
1.5b)

≤ (b− a)‖ϕn − ϕm‖∞ ≤ (b− a)(‖ϕn − f‖∞ + ‖f − ϕm‖∞)
n→∞−→ 0,

i.e., (In)n∈N is a Cauchy sequence and thus convergent. Let further (ψn)n∈N ⊂ T ([a, b],K)
be another sequence of step functions with ‖ψn − f‖∞

n→∞−→ 0. If we consider the se-
quence ϕ1, ψ1, ϕ2, ψ2, . . . =: (gn)n∈N of step functions, we have ‖f −gn‖∞

n→∞−→ 0. Thus,

the sequence (
∫ b
a
gn)n∈N converges and the subsequences (

∫ b
a
ϕn)n∈N and (

∫ b
a
ψn)n∈N have

the same limit. These considerations show that we have the following result.

2.1 Theorem and Definition. Let f ∈ S([a, b],K) and ϕn ∈ T ([a, b],K) for all n ∈ N
with ‖f − ϕn‖∞

n→∞−→ 0. Then the limit

lim
n→∞

∫ b

a

ϕn(x) dx =:

∫ b

a

f(x) dx.

exists and is independent of the choice of ϕn. This limit is called the integral of f on
[a, b] .

In the following, we also use the notations
∫
f ,
∫
I
f or

∫
I
f(x) dx for the integral of a

jump continuous function f . Since continuous functions and monotone functions are
jump continuous, the following corollary is immediately evident:

2.2 Corollary. The integral
∫ b
a
f(x)dx exists for every continuous and every monotone

(real-valued) function f on [a, b].

On the other hand, we remark that not every function on [a, b] is integrable. A coun-
terexample is the Dirichlet function already known from Chapter III. More precisely,
the integral of the function f , given by

f(x) =

{
1, x ∈ Q ∩ [0, 1]
0, x ∈ R \Q ∩ [0, 1]

does not exist.

2.3 Theorem. Let α, β ∈ K and f, g ∈ S([a, b],K). Then we have
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a)
∫ b
a
(αf + βg) = α

∫ b
a
f + β

∫ b
a
g (Linearity of the integral).

b) |f | ∈ S([a, b],R) and

∣∣ ∫ b

a

f
∣∣ ≤ ∫ b

a

|f | ≤ (b− a)‖f‖∞.

c) If we have f ≤ g, i.e. f(x) ≤ g(x) for all x ∈ [a, b], we also have∫ b

a

f ≤
∫ b

a

g, (Monotonicity of the integral).

Proof. Assume that ϕn, ψn ∈ T ([a, b],K) are step functions for all n ∈ N, and (ϕn)n∈N
and (ψn)n∈N converge uniformly to f and g, respectively.

Then (αϕn + βψn) converges uniformly to αf + βg and we have∫ b

a

(αf + βg) = lim
n→∞

(

∫ b

a

(αϕn + βψn)) =

α( lim
n→∞

∫ b

a

ϕn) + β( lim
n→∞

∫ b

a

ψn) = α

∫ b

a

f + β

∫ b

a

g,

which is claim a).
b) Since the sequence (|ϕn|)n∈N converges uniformly to |f |, and since |f | ∈ S([a, b],R)

(compare Theorem 1.6), it follows that
∫
|f | Thm.2.1

= limn→∞
∫
|ϕn|. Thus,

∣∣ ∫ f
∣∣ =

∣∣ lim
n→∞

∫
ϕn
∣∣ = lim

n→∞

∣∣ ∫ ϕn
∣∣ ≤ lim

n→∞

∫
|ϕn|︸ ︷︷ ︸∫

|f |

≤ lim
n→∞

‖ϕn‖∞|b−a| = ‖f‖∞(b−a).

c) Assume that ϕn and ψn are real valued step functions on [a, b]. Then Φn := ϕn−‖f−
ϕn‖∞ and Ψn := ψn+‖g−ψn‖∞ are also step functions on [a, b] with Φn ≤ f ≤ g ≤ Ψn

and (Φn)n∈N and (Ψn)n∈N converge uniformly to f and g, respectively. Thus, we have∫ b

a

f = lim
n→∞

∫ b

a

Φn ≤ lim
n→∞

∫ b

a

Ψn =

∫ b

a

g.

�

We now consider a jump continuous function f ∈ S([a, b],K), real numbers c, d ∈
[a, b] and define ∫ d

c

f :=

∫ d

c

f(x)dx :=


∫

[c,d]
f, c < d

0, c = d
−
∫

[d,c]
f, d < c .
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In particular, we have ∫ d

c

f = −
∫ c

d

f.

2.4 Lemma. (Additivity of the integral). Let f ∈ S([a, b],K) and c ∈ [a, b]. Then we
have ∫ b

a

f =

∫ c

a

f +

∫ b

c

f.

Proof. Let a ≤ c ≤ b. Then the claim is obviously true for all step functions f ∈
T ([a, b],K). Therefore, we consider a sequence (ϕn)n∈N ⊂ T ([a, b],K) which converges
uniformly on [a, b] to f . Then ϕn|J ∈ T (J,K) and (ϕn|J)n∈N converges uniformly to

f |J for each compact subinterval J of [a, b]. Since
∫ b
a
ϕn =

∫ c
a
ϕn +

∫ b
c
ϕn, it follows

that
∫ b
a
f =

∫ c
a
f +

∫ b
c
f .

�

2.5 Lemma. Let f ∈ S([a, b],R) be a jump continuous function with f(x) ≥ 0 for all

x ∈ [a, b]. If f is continuous at c ∈ [a, b] and f(c) > 0, it follows that
∫ b
a
f > 0.

Proof. First, let a < c < b. Since f in continuous at c by assumption, there exists a
δ > 0 with [c− δ, c+ δ] ⊂ [a, b] and

f(x) ≥ 1

2
f(c), for all x ∈ [c− δ, c+ δ].

Since f ≥ 0, the monotonicity of the integral (Theorem 2.3) implies that
∫ c−δ
a

f ≥ 0

and
∫ b
c+δ

f ≥ 0. Therefore we have∫ b

a

f
2.4
=

∫ c−δ

a

f +

∫ c+δ

c−δ
f +

∫ b

c+δ

f ≥
∫ c+δ

c−δ
f ≥ 1

2
f(c)

∫ c+δ

c−δ
1 = δf(c) > 0.

The proof for the cases c = a and c = b is similar.
�

2.6 Theorem (Mean value theorem for integrals (Mittelwertsatz für das
Integral)). Let f ∈ C([a, b],R), ϕ ∈ S([a, b],R) with f being real valued and ϕ ≥ 0.
Then there exists a point ξ ∈ [a, b] with∫ b

a

f(x)ϕ(x) dx = f(ξ)

∫ b

a

ϕ(x) dx.
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Proof. Because f is continuous on a compact interval, there exist m,M ∈ [a, b] such
that f(m) = minx∈[a,b] f(x) and f(M) = maxx∈[a,b] f(x). Since ϕ ≥ 0, we have

f(m)ϕ(x) ≤ f(x)ϕ(x) ≤ f(M)ϕ(x),

and by the monotonicity of the integral

f(m)

∫ b

a

ϕ(x) dx ≤
∫ b

a

f(x)ϕ(x) dx ≤ f(M)

∫ b

a

ϕ(x) dx.

Now the function g(t) := f(t)
∫ b
a
ϕ(x) dx is continuous, whence by the intermedi-

ate value theorem there exists a ξ between m and M such that f(ξ)
∫ b
a
ϕ(x)dx =∫ b

a
f(x)ϕ(x)dx. This is precisely the claim.

�

If we consider the above theorem for the particular case ϕ ≡ 1, we obtain the following
corollary.

2.7 Corollary. To each f ∈ C([a, b],R) there exists a point ξ ∈ [a, b] such that∫ b

a

f(x) dx = f(ξ)(b− a).

Now, for f ∈ S([a, b],K) we consider the mapping

F : [a, b]→ K, F (x) :=

∫ x

a

f(s) ds.

Then the additivity of the integral implies

F (x)− F (y) =

∫ x

a

f(s) ds−
∫ y

a

f(s) ds =

∫ x

y

f(s) ds, for all x, y ∈ [a, b].

Now Theorem 2.3 b) immediately implies the estimate

|F (x)− F (y)| ≤ ‖f‖∞|x− y|, x, y ∈ [a, b].

2.8 Theorem. (Differentiability of the integral by the upper bound). Assume that
f ∈ S([a, b],K) is continuous at c ∈ [a, b] and let F : [a, b]→ K be defined by

F (x) :=

∫ x

a

f(s) ds.

Then F is differentiable in c and we have F ′(c) = f(c).
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Proof. Let h 6= 0 such that c+ h ∈ [a, b]. Then we have

F (c+ h)− F (c)

h
=

1

h

(∫ c+h

a

f(s) ds−
∫ c

a

f(s) ds

)
Add.
=

1

h

∫ c+h

c

f(s) ds.

Since
∫ c+h
c

f(c) ds = f(c)h, we have

F (c+ h)− F (c)− f(c)h

h
=

1

h

∫ c+h

c

(f(s)− f(c)) ds,

and thus∣∣∣∣F (c+ h)− F (c)− f(c)h

h

∣∣∣∣ ≤ 1

|h|

∫ c+h

c

|f(s)− f(c)| ds ≤ sup
s∈[c,c+h]

|f(s)− f(c)| h→0−→ 0,

since f is continuous in c. Therefore, F is differentiable in c and we have F ′(c) = f(c).
�

We summarize our previous considerations in the following fundamental theorem of
calculus.

2.9 Theorem. (Fundamental Theorem of calculus (Hauptsatz der Differential- und
Integralrechnung)). Let f : [a, b]→ K be a continuous function and for c ∈ [a, b] let

F (x) :=

∫ x

c

f(s) ds, x ∈ [a, b].

Then we have

a) F is differentiable for all x ∈ [a, b] and we have F ′(x) = f(x) for all x ∈ [a, b].

b) If φ : [a, b] → K is a differentiable function with φ′(x) = f(x) for all x ∈ [a, b],
we have

φ(x) = φ(y) +

∫ x

y

f(s) ds, x, y ∈ [a, b].

Proof. Claim a) follows directly from Theorem 2.8. To show claim b), let F and φ as
in the assumption. Then we have (F − φ)′ = 0, thus F = φ+ α for a constant α ∈ C.
Therefore,∫ x

y

f(s) ds = F (x)− F (y) = φ(x) + α− φ(y)− α = φ(x)− φ(y).

�
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2.10 Definition.
Let f ∈ S([a, b],K). A differentiable function F : [a, b] → K with F ′(x) = f(x) for all
x ∈ [a, b] is called antiderivative (Stammfunktion) of f .

The above fundamental theorem of calculus implies the following corollary.

2.11 Corollary. Every continuous function f : [a, b]→ K has an antiderivative F and
we have: ∫ x

y

f(s) ds = F (x)− F (y) =: F
∣∣x
y
, x, y ∈ [a, b].

Thus, the above corollary guarantees the existence of antiderivatives for continuous
functions. However, we remark that in the most cases, it is not possible to give an
explicit definition of antiderivatives.

2.12 Examples. a) In the following table, we collect examples of functions f for which
antiderivatives F can be given explicitly.

f(x) F (x)

xa xa+1

a+1
, a 6= −1

1
x

log |x|
ex ex

cosx sin x
1

cos2 x
tan x

1
1+x2 arctanx

1√
1−x2 arcsinx

b) If f : (a, b)→ R is differentiable and f(x) 6= 0 for all x ∈ (a, b), we have∫
f ′

f
= log |f |.

In analogy to the previous section we now consider a sequence of jump continuous
functions (fn)n∈N, which converge uniformly to a function f on [a, b], and ask whether
f is in turn integrable (i.e. jump continuous). The answer is given by the following
theorem.

2.13 Theorem. Let (fn)n∈N ⊂ S([a, b],K) be a sequence of jump continuous functions
which converge uniformly to f on [a, b]. Then f ∈ S([a, b],K) and we have

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

f(x) dx.
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Proof. For given ε > 0 we choose n ∈ N so big, that ‖f − fn‖∞ ≤ ε/2, and for given
fn, we choose a step function ϕ with ‖fn−ϕ‖∞ ≤ ε/2. Then we have ‖f −ϕ‖ ≤ ε and
thus f ∈ S([a, b],K). Furthermore, we have∣∣ ∫ b

a

f(x) dx−
∫ b

a

fn(x) dx
∣∣ ≤ ‖f − fn‖(b− a) ≤ ε(b− a),

and this is the proposition.
�

2.14 Remark. The above Theorem 2.13 allows to give an easy and elegant proof of
Theorem IV.4.7. First of all, the limit function f ∗ = limn→∞ f ′n of the derivatives is
continuous on [a, b] by Theorem IV.4.6. For fixed a ∈ I and arbitrary x ∈ I we have

fn(x) = fn(a) +

∫ x

a

f ′n(t) dt,

and thus, by Theorem 2.13, we have

f(x) = f(a) +

∫ x

a

f ∗(t) dt

for n → ∞. By the fundamental theorem of calculus, f is differentiable and we have
f ′(x) = f ∗(x) = limn→∞ f ′n(x).

In the following, we consider the approximation of the integral by so-called Riemann
sums

2.15 Definition. Assume that f : [a, b] → K is a function, Z := (x0, . . . , xn) is a
partition of the interval [a, b] and ξj ∈ [xj−1, xj] for j ∈ {1, . . . , n}. Then

n∑
j=1

f(ξj)(xj − xj−1)

is called the Riemann sum (Riemann Summe) of f with respect to Z. The norm
(Feinheit) of the partition Z is defined as ‖Z‖ := max1≤j≤n(xj − xj−1).

We have the following theorem.

2.16 Theorem. Let f ∈ S([a, b],K) be a jump continuous function. Then to each
ε > 0 there exists some δ > 0, such that for every partition Z of [a, b] with norm
‖Z‖ < δ and every choice of points ξj ∈ [xj−1, xj] we have∣∣∣∣∣

n∑
j=1

f(ξj)(xj − xj−1)−
∫ b

a

f(x) dx

∣∣∣∣∣ < ε.
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Proof. First, we show the claim for step functions ϕ via induction on the number m of
discontinuities of ϕ. Then we deduce the claim for general jump continuous functions
using the approximation theorem (1.6).
a) Let ϕ ∈ T ([a, b],K) be a step function and ε > 0. If we have ϕ = c for all x ∈ [a, b]
and a c ∈ K, the claim follows immediately. If ϕ has exactly one discontinuous point,
the claim follows easily by setting δ := ε

4‖ϕ‖ .
For the induction step assume that the proposition holds for step functions with m
discontinuities and consider a step function ϕ with m + 1 discontinuous points. We
then decompose ϕ into ϕ = ϕ′ +ϕ′′, where ϕ′ is a step function with m discontinuities
and ϕ′′ is a step function with exactly one discontinuities. For a given ε > 0 we choose
a δ′(ε/2) for ϕ′ and a δ′′(ε/2) for ϕ′′ in such a way that the proposition holds for ϕ′

and ϕ′′; if we then set δ = min(δ′, δ′′) the proposition also holds for ϕ.
b) For f ∈ S([a, b],K) choose ϕ ∈ T ([a, b],K) with ‖f − ϕ‖∞ < ε

3(b−a) and δ := δ( ε
3
).

By a), we have |
∑n

j=1 ϕ(ξj)(xj − xj−1)−
∫ b
a
ϕdx| < ε

3
; therefore,

∣∣ n∑
j=1

f(ξj)(xj − xj−1)−
∫ b

a

f dx
∣∣ ≤ ∣∣ n∑

j=1

f(ξj)(xj − xj−1)−
n∑
j=1

ϕ(ξj)(xj − xj−1)
∣∣

+
∣∣ n∑
j=1

ϕ(ξj)(xj − xj−1)−
∫ b

a

ϕdx
∣∣

︸ ︷︷ ︸
< ε

3

+
∣∣ ∫ b

a

ϕdx−
∫ b

a

f dx
∣∣︸ ︷︷ ︸

< ε
3

<
n∑
j=1

‖f − ϕ‖∞(xj − xj−1) +
ε

3
+
ε

3
< ε

�

2.17 Corollary. Let Z1, Z2 . . . , be a sequence of partitions of the interval [a, b] with
‖Zn‖ → 0, n → ∞. Let f ∈ S([a, b],K) and Sn be the corresponding sequence of
Riemann sums. Then we have

lim
n→∞

Sn =

∫ b

a

f.

2.18 Remarks. a) A function f : [a, b]→ C is called Riemann integrable if there exists
a c ∈ C with the following property: To each ε > 0 there exists a δ > 0 such that∣∣c− n∑

j=1

f(ξj)(xj − xj−1)
∣∣ < ε
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for every partition Z := (x0, . . . , xn) with norm ‖Z‖ < δ and every choice of ξj ∈
[xj−1, xj].
b) The above Theorem 2.16 says that every jump continuous function f ∈ S([a, b],K)
is Riemann integrable and the Riemann integral coincides with our integral for these
functions.
c) There exist Riemann-integrable functions which are not jump continuous.

The above Corollary 2.17 allows in many cases to transfer statements about sums to
integrals. As an example consider the Hölder inequality for integrals. To this end
define

‖f‖p :=
( ∫ b

a

|f(x)|p dx
)1/p

for f ∈ S([a, b],K) and 1 < p <∞. Then the following inequality holds.

2.19 Corollary. For f, g ∈ S([a, b],K) and 1 < p, q <∞ we have∫ b

a

|f(x)g(x)| dx ≤ ‖f‖p‖g‖q ,
1

p
+

1

q
= 1.

For p = q = 2, this is the Cauchy-Schwarz inequality for integrals.
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3 Integration techniques

The fundamental theorem of calculus from the previous section allows to transfrom
the product rule and the substitution rule from differential calculus into very useful
integration techniques. We start this relatively short section with the substitution rule.
In the entire section, let I ⊂ R be a compact interval and a, b ∈ R with a < b.

3.1 Theorem ( Substitution rule). (Substitutionsregel) Let f ∈ C(I,K) and
ϕ ∈ C1([a, b],R) with ϕ([a, b]) ⊂ I. Then we have∫ b

a

f(ϕ(x))ϕ′(x) dx =

∫ ϕ(b)

ϕ(a)

f(y) dy.

Proof. By the fundamental theorem, f has an antiderivative F ∈ C1(I,K). The chain
rule implies that F ◦ ϕ ∈ C1([a, b],K) and that

(F ◦ ϕ)′(x) = F ′(ϕ(x))ϕ′(x) = f(ϕ(x))ϕ′(x), x ∈ [a, b] .

Therefore,

b∫
a

f(ϕ(x))ϕ′(x) dx = (F ◦ ϕ)
∣∣b
a

= F (ϕ(b))− F (ϕ(a)) = F
∣∣ϕ(b)

ϕ(a)
=

∫ ϕ(b)

ϕ(a)

f(y) dy.

�

3.2 Examples. a) For α > 0 and β ∈ R we have∫ b

a

cos(αx+ β) dx =
1

α

∫ αb+β

αa+β

cosu du =
1

α
sin
∣∣αb+β
αa+β

=
1

α
(sin(αb+ β)− sin(αa+ β)).

b) We have∫ 1

0

xn−1 sin(xn) dx =
1

n

∫ 1

0

sinu du = −cosu

n

∣∣1
0

=
1

n
(1− cos 1).

3.3 Theorem (Integration by parts). (Partielle Integration) For functions
f, g ∈ C1([a, b],K) we have∫ b

a

fg′ dx = (fg)
∣∣b
a
−
∫ b

a

f ′g dx .
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The proof is easy. By the product rule, we have (fg)′ = f ′g + fg′; and thus∫ b

a

(fg)′dx =

∫ b

a

f ′gdx+

∫
fg′dx.

�

3.4 Examples. a) We have∫ b

a

xexdx = xex
∣∣b
a
−
∫ b

a

exdx = beb − aea − [eb − ea].

b) We identify a recursion formula In =
∫

sinn xdx for n ≥ 2 as follows: We have

In =

∫
sin x · sinn−1 xdx = − cosx sinn−1(x) + (n− 1)

∫
cosx sinn−2 x cosxdx

= − cosx sinn−1 x+ (n− 1)

∫
(1− sin2 x) sinn−2 xdx

= − cosx sinn−1 x+ (n− 1)In−2 − (n− 1)In

and thus

In =
n− 1

n
In−2 −

1

n
cosx sinn−1 x,

where I0 =
∫

sin0 x =
∫

1dx = x and I1 =
∫

sin x = − cosx.

c) Wallis’ product (Wallissches Produkt – cf. exercises): We have

π

2
=

∞∏
j=1

4j2

4j2 − 1
.

For the proof, consider An =
∫ π

2

0
sinn x dx.

3.5 Example. Area of the unit circle

Consider the function f : [−1, 1] → R given by x 7→
√

1− x2. If we define A =∫ 1

−1

√
1− x2 dx and substitute x = cos t, we obtain by the example in (b)

A = −
∫ 0

π

√
1− cos2 t sin t dt =

∫ π

0

sin2 t dt =
1

2

∫ π

0

dt− 1

2
sin t cos t

∣∣π
0

=
π

2
.

Hence, the area of the unit circle is 2 · π
2

= π.
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4 Improper integrals

With our current concept of integral, we can integrate jump continuous functions which
are defined on a compact interval I = [a, b].

In this section, we want to extend this concept of integral in order to integrate
functions on arbitrary (not necessarily compact) intervals of the real line. This leads
to the concept of improper integrals.

In the entire section we assume −∞ ≤ a < b ≤ ∞. We call a function f : (a, b)→
C admissible, , if the restriction of f to each compact subinterval of (a, b) is jump
continuous. It is clear that a continuous function f : (a, b)→ K is admissible; likewise
f ∈ S((a, b),K) is admissible if a, b ∈ R, and |f | is admissible if f : (a, b) → K is
admissible.

4.1 Definition. An admissible function f : (a, b)→ C is called improperly integrable,
if there exists a point c ∈ (a, b) such that the limits

lim
α→a+

∫ c

α

f and lim
β→b−

∫ β

c

f

exist.

We remark at this point that for an improperly integrable function f the above limits
exist for all c ∈ (a, b).

4.2 Definition. Assume that f : (a, b) → K is improperly integrable and c ∈ (a, b).
Then ∫ b

a

f dx :=

∫ b

a

f(x) dx := lim
α→ a+

∫ c

α

f dx+ lim
β→ b−

∫ β

c

f dx

is called the improper integral of f over (a, b).

4.3 Examples. a) For α ∈ R we have∫ ∞

1

1

xα
dx exists ⇔ α > 1.

To see this, we choose α 6= 1. Then we have∫ b

1

1

xα
dx =

1

1− α
x1−α∣∣b

1
=

1

1− α
(b1−α − 1),

and the above integral converges for b→∞ if and only if α > 1.
If α = 1, we have

∫ b
1

1
x
dx = log b which means that the limit limb→∞

∫ b
1

1
x
dx does not
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exist.

b) Analogously, one proves the following proposition:∫ 1

0

1

xα
dx exists ⇔ α < 1.

c) We have ∫ ∞

0

1

1 + x2
dx =

π

2
,

because the antiderivative of x 7→ 1
1+x2 is given by x 7→ arctanx and we have

lim
b→∞

arctanx
∣∣b
0

=
π

2
.

d) For α > 0 we have ∫ ∞

0

e−αxdx =
1

α
,

because we have
∫ R

0
e−αxdx = 1

α
(1− e−αR)

R→∞−→ 1
α
.

4.4 Theorem. (Comparison of integrals and series). Let f : [1,∞) → R+ be an
admissible and monotone decreasing function. Then we have

∞∑
n=1

f(n) <∞ ⇐⇒
∫ ∞

1

f(x) dx exists.

Proof. For x ∈ [n − 1, n] and n ≥ 2, we have f(n) ≤ f(x) ≤ f(n − 1) by assumption.
Therefore, f(n) ≤

∫ n
n−1

f(x) dx ≤ f(n− 1) and thus

N∑
n=2

f(n) ≤
∫ N

1

f(x) dx ≤
N−1∑
n=1

f(n), N ≥ 2.

Hence, ∫ N

1

f(x) dx ≤
N−1∑
n=1

f(n) ≤
∞∑
n=1

f(n)

and thus limN→∞
∫ N

1
f(x) dx exists whenever

∑∞
n=1 f(n) converges.

To show the converse direction, we note that

N∑
n=2

f(n) ≤
∫ N

1

f(x) dx ≤
∫ ∞

1

f(x) dx <∞.
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Thus, (
∑N

n=1 f(n))N∈N is a monotone and bounded sequence, and this implies that∑∞
n=1 f(n) converges.

�
As an example, consider the function f : [1,∞)→ R+, given by f(x) = 1

xα . In this
case, the theorem yields

∞∑
n=1

1

nα
is convergent ⇔

∫ ∞

1

1

xα
dx exists

4.3⇔ α > 1.

4.5 Definition. An admissible function f : (a, b) → K is called absolutely integrable

(absolut integrierbar), if
∫ b
a
|f(x)| dx exists.

4.6 Lemma. An absolutely integrable function f : (a, b)→ K is integrable.

For the proof we refer to the exercises.

4.7 Theorem. (Comparison test for integrals). Assume that f, g : (a, b) → R are
admissible functions, such that we have

|f(x)| ≤ g(x), x ∈ (a, b).

If g is integrable, then f is absolutely integrable.

For the proof we again refer to the exercises.

4.8 Example. The integral ∫ ∞

0

sin x

x
dx

is convergent, but not absolutely convergent
To see this, we first of all observe that limx→0

sinx
x

= 1 (thus the integrand is continuous
on the whole real line). Therefore, it suffices to examine the convergence of the integral∫∞

1
sinx
x
dx. An integration by parts gives∫ R

1

sinx

x
dx = cos 1− cosR

R
−
∫ R

1

cosx

x2
dx.

The integral
∫∞

1
cosx
x2 dx exists, since it is dominated by the convergent integral

∫∞
1

1
x2 dx.

This means that the limit

lim
R→∞

∫ R

1

sin x

x
dx
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exists.
On the other hand, the integral

∫∞
1

sinx
x
dx does not converge absolutely, since for each

k ∈ N we have∫ (k+1)π

kπ

|sin x
x
| dx ≥ 1

(k + 1)π

∫ (k+1)π

kπ

| sin x| dx =
2

(k + 1)π
,

and therefore we have ∫ (k+1)π

0

|sin x
x
|dx ≥ 2

π

k∑
n=0

1

n+ 1
.

The latter expression is the harmonic series, whence the above limit does not exist for
k →∞.

To conclude this section, we consider the gamma function and the beta function. Both
functions are defined by improper integrals and represent important functions of anal-
ysis.

4.9 Example. (The gamma function).
We begin with the definition of the gamma function. For z ∈ C with Re(z) > 0 we
define

Γ(z) :=

∫ ∞

0

tz−1e−t dt.

This function was introduced by Euler, whose motivation was to interpolate the facto-
rial function n 7→ n!, defined for n ∈ N. First of all, we show that the gamma function
is well defined.

For t ∈ (0, 1] we have the estimate

|tz−1e−t| = tRe(z)−1e−t ≤ tRe(z)−1,

and by Example 4.3b) and Theorem 4.7 it follows that
∫ 1

0
tz−1e−tdt converges absolutely.

For t ∈ [1,∞) we have

tRe(z)−1e−t ≤ Cze
−t/2

for a constant Cz which depends on z. Since the integral
∫∞

1
e−t/2 dt exists by Exam-

ple 4.3 d), the integral
∫∞

1
tz−1e−t dt is absolutely convergent. The gamma function

Γ : {z ∈ C : Re(z) > 0} → C defined in this way has the following properties:

a) Γ(z + 1) = z Γ(z), Re(z) > 0,

b) Γ(1) = 1,

c) Γ(n+ 1) = n!, n ∈ N.
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To see property a), we integrate by parts to obtain

∫ b

a

tze−tdt︸ ︷︷ ︸
→Γ(z+1) for b→∞, a→0+

= −tze−t |ba︸ ︷︷ ︸
→0 for b→∞, a→0+

+ z

b∫
a

tz−1e−tdt

︸ ︷︷ ︸
→z Γ(z) for b→∞, a→0+

, 0 < a < b <∞.

Therefore we have Γ(z + 1) = z for Re(z) > 0.
Property b) follows immediately from Example 4.3 d). Similarly, property c) follows
by applying a) repeatedly in connection with b).

In many applications, it is important to calculate approximate values of Γ(x) or
n! of large x and n, respectively. In this context, the Stirling formula is of particular
interest. It says that for x > 0 we have

Γ(x) =
√

2πxx−1/2e−x+µ(x), with 0 < µ(x) <
1

12x
.

Therefore,
√

2πxx−1/2e−x is often used as an approximation of Γ(x). The relative error
of the approximation is e−12x − 1 and is smaller than one percent already for x > 10.

4.10 Example. (The beta function)
Another important function, also defined by an improper integral, is the so-called beta
function. For p, q ∈ C with Re(p), Re(q) > 0, it is defined by

B(p, q) =

∫ 1

0

tp−1(1− t)q−1dt.

The above integral is absolutely convergent (cf. exercises) and thus B(p, q) is well
defined. Furthermore, we have the relation

Γ(p)Γ(q)

Γ(p+ q)
= B(p, q), Re(p), Re(q) > 0.



Chapter VI

Analysis of metric spaces

What are reasons that mathematicians introduce spaces of infinite dimensions, interpret
a sequence of real numbers as one point in a space of sequences as well as a function as
one point in a function space? Two issues were the moving spirits for the development
of these concepts: on the one hand to find a solution of integral equations of type

u(t) +

∫ 1

0

k(t, s)u(s)ds = f(t) , t ∈ [0, 1],

where the kernel k and the function f are given.
On the other hand to find a solution u of the variational problem

F (u) =

∫ 1

0

f(s, u(s), u′(s))ds
!
= min , u ∈ X,

for a given function f and a given set X of functions, i.e., find some u ∈ X such that F
attains its minimum on X. David Hilbert (1862-1943) realized that the above integral
equation could be dealt with as a system of linear equations in the (nowadays called)
Hilbert sequence space `2. A different approach consists of an iterative solution of the
above integral equations, i.e., to obtain the solution u as a limit of the sequence

uj+1(t) = f(t)−
∫ 1

0

k(t, s)uj(s)ds.

In the discussion concerning the convergence of the sequence (uj)j it is only natural
and also very helpful to consider a function as an element of a suitable space. This
concept is also quite natural for variational problems: The argument u of f is itself a
function.

In his thesis 1906 Maurice Fréchet (1878-1973) introduced the abstract concept of
a metric space, an idea which is still of great importance today. It allows to discuss
questions concerning convergence and continuity in a consistent and clear way. The
theory of convergence then leads to the idea of a complete metric space due to Fréchet
and Hausdorff (1868-1942).

137
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A particularly important class of complete metric spaces are the Banach spaces.
This concept, due to Stephan Banach (1892-1945), is of enormous importance in today’s
modern analysis. It is based on the idea of a normed vector space. A significant role is
played by a subclass of the Banach spaces, where the norm can be defined by a scalar
product. The elements of this subclass are nowadays called Hilbert spaces and were
axiomatically introduced 1929 by John von Neumann (1903-1957); in particular, they
play a central role in quantum mechanics.

In the following sections we deal with the basic topological ideas such as neigh-
borhood and open sets in metric spaces. Section 2 extends these considerations to
convergence of sequences and continuity of functions in metric spaces; here we also
introduce the notion of complete metric space and of a normed space.

In Section 3 we introduce compact sets via the covering property and show that
the concepts of “cover compactness” and “sequential compactness” coincide in metric
spaces. Thus, fundamental properties of continuous functions on compact sets in Rn

can smoothly be carried over to metric spaces.
We close this chapter with a section on continuous functions on connected sets. The

latter are, last but not least, of importance since they represent a topological invariant.

1 Topology of metric spaces

Here we extend the concept of a neighborhood in Rn to the setting of metric spaces.

1.1 Definition (Metric space). Let M 6= ∅. A function

d : M ×M → R

is called a metric on M if the following conditions are valid for all x, y, z ∈M .

(M1) d(x, y) = 0 ⇔ x = y (definiteness)

(M2) d(x, y) = d(y, x) (symmetry)

(M3) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

The pair (M,d) is called a metric space . The number d(x, y) is called the distance of
the points x and y.

♦

Remark. For all x, y ∈M we have d(x, y) ≥ 0, since

0 = d(x, x) ≤ d(x, y) + d(y, x) = 2d(x, y).

Let us now illustrate the concept via some examples
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1.2 Examples. a) For x, y ∈ K we define the Euclidean metric by

d(x, y) = |x− y|.

b) The rule

d(x, y) :=

{
0 x = y

1 x 6= y

for x, y ∈M defines a metric on M , the so-called discrete metric.

c) If X ⊂M and if (M,d) is a metric space, then

dX : X ×X → R, dX(x, y) := d(x, y)

defines a metric on X, the so-called induced metric.

An important subclass of the metric spaces is formed by the normed spaces. Let
us start by explaining a norm on a vector space.

1.3 Definition. Let V be a vector space over K. The map

‖·‖ : V → R

is called a norm on V , if the following properties hold for all x, y ∈ V and λ ∈ K.

(N1) ‖x‖ = 0 ⇔ x = 0 (definiteness)

(N2) ‖λx‖ = |λ| ‖x‖ (homogeneity)

(N3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

The pair (V, ‖·‖) is called a normed (vector) space.
♦

1.4 Remarks. a) If (V, ‖·‖) is a normed space, then

d(x, y) := ‖y − x‖ for x, y ∈ V

defines a metric on V and (V, d) is a metric space. Thus each normed space
becomes a metric space when it is equipped with this canonical metric.

b) The following properties follow directly from the definition of the norm.

(i) ‖x‖ ≥ 0 for all x ∈ V
(ii) ‖y − x‖ ≥ |‖y‖ − ‖x‖| for all x, y ∈ V
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1.5 Examples. a) Let 1 ≤ p ≤ ∞ and n ≥ 1. Define the so-called p-norm by

‖x‖p := ‖(x1, . . . , xn)‖p :=


(∑n

j=1 |xj|
p
) 1

p
1 ≤ p <∞

max1≤j≤n |xj| p =∞.

Then (Kn, ‖·‖p) is a normed space.

In the case K = R the norm ‖·‖2 is also called Euclidean norm, the norm ‖·‖∞
is often called maximum norm.

The geometric shape of a ball in a normed space naturally depends on the chosen
norm. The figures below show the unit ball in R2, B1(0) := {x ∈ R2 : ‖x‖p ≤ 1},
with respect to the p-norms for p = 1, 2 and p =∞.

b) Let [a.b] ⊂ R be a compact interval. The set

V := C([a, b],K) = {f : [a, b]→ K : f continuous}

is a vector space which can be normed by

‖f‖p :=


(∫ b

a
|f(x)|p dx

) 1
p

1 ≤ p <∞
supx∈[a,b] |f(x)| p =∞.

For p ≤ ∞ this is called the Lp-norm, for p =∞ the supremum norm. Lp-norms
play a central role in harmonic analysis.

c) Let c := {(xn)n∈N : (xn)n∈N convergent}, xn ∈ K, be the vector space of conver-
gent sequences and x := (xn)n∈N. Then

‖x‖∞ := ‖(xn)n∈N‖∞ := supn∈N |xn|

is a norm on c.

Let us now carry over the basic ideas of neighborhoods and open/closed sets from
Rn to general metric spaces (M,d).

1.6 Definition. Let (M,d) be a metric space. Then we call

a) Uε(x) := {y ∈M : d(x, y) < ε}, x ∈M, ε > 0, an ε-neighborhood of x.

b) U ⊂M a neighborhood of x, if there exists some ε > 0 such that Uε(x) ⊂ U .

c) O ⊂M open, if to each x ∈ O there exists some εx > 0 such that Uεx(x) ⊂ O.
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d) A ⊂M closed , if M \ A is open.

e) X ⊂M d-bounded , if there exists some x ∈M and r > 0 such that X ⊂ Ur(x).

f) x ∈M a boundary point of the set X ⊂M , if each neighborhood of x contains a
an element of X as well as an element of M \X. If one sets

(i) ∂X := {x ∈M : x is a boundary point of X}, then ∂X is called the bound-
ary of X.

(ii) X̊ := X \∂X, then X̊ is called the interior of X; an element x ∈ X̊ is called
an interior point of X.

g) x ∈ M is an accumulation point of the set X ⊂ M if each neighborhood of x
contains infinitely many points of X (or equivalently one point of X \ {x}). If
one sets

X := {x ∈M : x ∈ X or x is an accumulation point of X},

then X is called the closure of X.

♦

Observe: If (Rn, d) is a metric space, a d-bounded setX ⊂ Rn need not be bounded

in the sense of Analysis I; e.g. Rn is d-bounded if we set d(x, y) := ‖x−y‖2
1+‖x−y‖2 .

The above concepts (except d-boundedness) are consistent with the corresponding
ones in Kn, which were made in Chap. III, 2 of Analysis I. This implies, in particular,
that many proofs on topological assertions in Kn can directly be carried over to metric
spaces while replacing |x− y| by d(x, y).

1.7 Theorem (Hausdorff’s separation axiom). If (M,d) is a metric space and
x, y ∈M such that x 6= y, then there exist neighborhoods Ux and Uy of x and y, resp.,
such that Ux ∩ Uy = ∅.

Proof. For ε := 1
2
d(x, y) set Ux := Uε(x), Uy := Uε(y). If there were a z ∈ Ux ∩Uy, we

would get
2ε = d(x, y) ≤ d(x, z) + d(z, y) < ε+ ε = 2ε.

Contradiction!
�

Analogously to the Kn-case one proves the following.

1.8 Lemma. In a metric space (M,d) we have

• Arbitrary unions and finite intersections of open sets are open.

• Arbitrary intersections and finite unions of closed sets are closed.
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The proof follows that of Theorem 2.5 in Chapter III while replacing |x− y| by
d(x, y).

1.9 Definition. Two norms ‖·‖1 and ‖·‖2 are called equivalent, if there exist two
constants c, C > 0 such that

c‖x‖1 ≤ ‖x‖2 ≤ C‖x‖1 for all x ∈ V . (1.1)

♦

Obviously, the above two norms ‖·‖1 and ‖·‖∞ on C([0, 1],R) are not equivalent.
For consider the sequence (fn)n of functions where

fn : [0, 1]→ R,

fn(x) =

{
1− nx 0 ≤ x ≤ 1/n

0 1/n < x ≤ 1

Then ‖fn‖∞ = 1 ∀n ∈ N, but ‖fn‖1 = 1
2n
∀n ∈ N.

On the other hand, the Euclidean norm and the maximum norm on Rn are equiv-
alent, since

‖x‖∞ := max
1≤k≤n

|xk| ≤

(
n∑
j=1

|xj|2
)1/2

=: ‖x‖2 ≤ max
1≤k≤n

|xk|

(
n∑
j=1

12

)1/2

=
√
n‖x‖∞.

We show that all norms on a finite dimensional vector space are equivalent.

1.10 Theorem. All norms on a finite dimensional K-vector space are equivalent.

Proof. (a) We first show this assertion for V = Rn. Observe that it is sufficient to
show that each norm ‖·‖ on Rn is equivalent to the Euclidean norm ‖x‖2.

Thus, let ‖·‖ be an arbitrary norm on Rn and ej be the j-th unit vector. Then
x = (x1, . . . , xn)

T =
∑n

j=1 xjej. The Cauchy-Schwarz inequality implies

‖x‖ = ‖
n∑
j=1

xjej‖ ≤
n∑
j=1

|xj| ‖ej‖ ≤ C‖x‖2, C :=

(
n∑
j=1

‖ej‖2
)1/2

. (1.2)

In order to prove the converse inequality, set

c := inf{‖x‖ : x ∈ S}, S := {x ∈ Rn : ‖x‖2 = 1}

where S denotes the Euclidean unit sphere. If c > 0, then the theorem follows directly
from the definition of c, since for x 6= 0 we have x

‖x‖2 ∈ S and hence

‖x‖ =
∥∥∥ x

‖x‖2

∥∥∥‖x‖2 ≥ c‖x‖2.
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If x = 0, the inequality is trivial and the assertion true for Rn.

Thus assume c = 0 (and try to obtain a contradiction). Then there is a sequence (xk)k
in S with limk→∞‖xk‖ = 0. By the Bolzano-Weierstrass Theorem from Analysis I (cf.
Chapter II, 2) the sequence (xk)k has a convergent subsequence with respect to the

Euclidean norm, i.e. there exists some a ∈ Rn such that ‖xkj
− a‖2

j→∞−→ 0. We have
a ∈ S since

a2
1 + . . .+ a2

n = lim
j→∞

(x2
kj ,1

+ . . .+ x2
kj ,n

) = 1.

On the other hand we conclude from (1.2) that for each k ∈ N

‖a‖ ≤ ‖a− xkj
‖+ ‖xkj

‖ ≤ C‖a− xkj
‖2 + ‖xkj

‖2.

For j → ∞ this implies ‖a‖ = 0 and therefore a = 0 in contradiction to the fact that
a ∈ S. Hence c > 0.

(b) Let V be an arbitrary K-vector space and ‖·‖ and ‖·‖∗ be two norms on V . If
φ : Rn → V is an isomorphism from Rn to V and if one sets

‖x‖φ := ‖φ(x)‖ and ‖x‖∗φ := ‖φ(x)‖∗,

then the assertion follows by part a).
�

1.11 Remark. The above theorem has important consequences. In particular, it says
that the above introduced topological basic concepts like neighborhood, open set, and
accumulation point in a finite dimensional normed space do not depend on a particular
chosen norm.
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2 Convergence and continuity

In the following we will transfer the concepts of convergence of a sequence and of
continuity of a mapping from the setting of Kn to the setting of metric spaces (M,d)
in general.

2.1 Definition. Let (M,d) be a metric space.

a) We say that a sequence (xj)j∈N ⊂M is convergent to x ∈M if for any neighbor-
hood U of x there exists an N0 ∈ N such that

xj ∈ U for all j ≥ N0.

In this case we write x = limj→∞ xj, and we say that x is the limit of the sequence
(xj)j∈N ⊂M .

b) We say that a sequence (xj)j∈N ⊂M is d-bounded if the set {xj : j ∈ N} ⊂M is
d-bounded.

c) We say that an element x ∈M is a cluster point of the sequence (xj)j∈N ⊂M if
every neighborhood of x contains infinitely many members of the sequence.

d) We say that a sequence (xj)j∈N ⊂ M is a Cauchy sequence if for every ε > 0
there exists an N0 ∈ N such that

d(xn, xm) < ε for all n,m ≥ N0 .

♦

We note that an accumulation point of the set {xk : k ∈ N} is a cluster point of
the sequence (xk)k∈N, but that the opposite is not true in general. This was the case
already for R.

The following statements can be deduced from the definitions above similarly to
the corresponding statements from Analysis I.

2.2 Proposition. The following statements hold:

a) The limit of a convergent sequence is unique.

b) Every convergent sequence is a Cauchy sequence.

c) Every Cauchy sequence is d-bounded.

d) A point x is a cluster point of a sequence if and only if the sequence has a
subsequence which converges to x.

e) A set A ⊂ M is closed if and only if for every sequence (xj)j∈N ⊂ A which
converges in M we have limj→∞ xj ∈ A.
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We now extend the concept of continuity of functions from the setting of functions
defined on subsets of Rn to the setting of functions from one metric space to another.

2.3 Definition. Let (M,dM) and (N, dN) be metric spaces. A mapping f : M → N
is called continuous in x0 ∈ M if for every neighborhood V of f(x0) ∈ N there exists
a neighborhood U of x0 such that f(U) ⊂ V .

♦

The following theorem characterizes continuous functions in terms of ε-δ-continuity
and sequential continuity.

2.4 Theorem (Characterization of continuous functions). Let f : M → N be
a function between the metric spaces (M,dM) and (N, dN). The following statements
are equivalent:

a) f is continuous in x0 ∈M .

b) (ε-δ-continuity). To each ε > 0 there exists a δ > 0 such that

dM(x, x0) < δ ⇒ dN(f(x), f(x0)) < ε.

c) (Sequential continuity). For each sequence (xj)j∈N ⊂M with limn→∞ xn = x0 we
have

f(x0) = lim
n→∞

f(xn), i.e., lim
n→∞

dN(f(xn), f(x0)) = 0.

Proof. The equivalence of the statements a) and b) follows immediately from the
definition of a neighborhood. The equivalence of the statements b) and c) follows as
in the proof of Proposition I.1.2 in Analysis I, where we only need to replace |x− y|
by dM(x, y) and |f(x)− f(y)| by dN(f(x), f(y)) throughout.

�

2.5 Theorem. Let (M,dM) and (N, dN) be metric spaces and let f : M → N be a
function. The following statements are equivalent:

a) f is continuous.

b) f−1(A) is closed in M whenever A ⊂ N is closed in N .

c) f−1(O) is open in M whenever O ⊂ N is open in N .

The proof is as the proof of Theorem III.2.17 from Analysis I, where we again
replace |x− y| by dM(x, y) and |f(x)− f(y)| by dN(f(x), f(y)).

We will now consider in more detail continuity of linear maps between normed
vector spaces. So let V and W be two vector spaces over K. A mapping T : V → W
is called a linear map or a linear operator if

T (αx+ βy) = αT (x) + βT (y) for all α, β ∈ K, x, y ∈ V.
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Let (V, ‖·‖V ) and (W, ‖·‖W ) be normed vector spaces, and let T : V → W be a
linear operator. If there exists a constant M ≥ 0 such that

‖T (x)‖W ≤M for all x ∈ V with ‖x‖V ≤ 1,

then we say that T is bounded . We will often write Tx instead of T (x).

2.6 Proposition. Let (V, ‖·‖V ) and (W, ‖·‖W ) be normed vector spaces and let T :
V → W be a linear operator. The following statements are equivalent.

a) T is continuous.

b) There exists an element x0 ∈ V such that T is continuous in x0.

c) There exists a constant L > 0 such that for all x, y ∈ V we have ‖Tx− Ty‖W ≤
L‖x− y‖V .

d) T is bounded.

Proof. We will show the following implications: a) ⇒ b), b) ⇒ d), d) ⇒ c), c) ⇒ a).

The implication a) ⇒ b) is clear.

b) ⇒ d): By assumption there exists to ε = 1 a δ > 0 such that

‖T (x− x0)‖W = ‖Tx− Tx0‖W ≤ 1 for all

x ∈ U δ(x0) := {y ∈ V : ‖x0 − y‖V ≤ δ}.

Letting h := (x − x0) ∈ U δ(0) we see that this statement is equivalent to saying
that ‖Th‖W ≤ 1 for all h ∈ U δ(0). This is again equivalent to saying that we have
‖T (δh)‖W ≤ 1 for all h ∈ U1(0), i.e., that we have ‖Th‖W ≤ 1

δ
for all h ∈ U1(0). This

means that T is bounded.

d) ⇒ c): Let M ≥ 0 be such that ‖Tx‖W ≤M for all x ∈ U1(0). Then we have

‖T
( x

‖x‖V

)
‖W ≤M for all x ∈ V with x 6= 0

and thus ‖Tx‖W ≤M‖x‖V for all x ∈ V . Thus

‖Tx− Ty‖W ≤M‖x− y‖V for all x, y ∈ V.

c) ⇒ a): Let L > 0 be such that ‖Tx− Ty‖W ≤ L‖x− y‖V for all x, y ∈ V . Hence, if
we choose to ε > 0 a δ := ε/L > 0 we have

‖Tx− Ty‖W ≤ L‖x− y‖V < L · ε
L

= ε

and (a) follows by Theorem 2.4.
�
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2.7 Remark. In the above proof of the implication d) ⇒ c) we have also proved that

‖Tx‖W ≤M for all x ∈ U1(0)

⇐⇒ ‖Tx‖W ≤M‖x‖V for all x ∈ V.

The infimum of all such constants M is called the operator norm ‖T‖ of T , i.e.,

‖T‖ := inf{M ≥ 0 : ‖Tx‖W ≤M‖x‖V for all x ∈ V }.

One can show that ‖T‖ = sup{‖Tx‖W : ‖x‖V ≤ 1}, and that ‖Tx‖W ≤ ‖T‖ · ‖x‖V
holds for all x ∈ V .

Defining
L(V,W ) := {T : V → W : T is linear and bounded},

makes (L(V,W ), ‖·‖) a normed vector space.

2.8 Example (The row-sum norm). If we furnish Kn with the maximum norm and
consider continuous linear mappings T from Kn into itself, then the associated operator
norm is given by

‖T‖ = max
i

n∑
j=1

|aij| ,

where T is represented by the matrix (aij)1≤i,j≤n.

For many results from Analysis I the completeness of the real numbers R was
essential. We will now define the concept of completeness of a metric space. We
will do this analogously to the formulation of the completeness of R in terms of the
convergence of Cauchy sequences.

2.9 Definition. A metric space (M,d) is called complete if all Cauchy sequences in
M converge. A complete normed vector space will also be called a Banach space.

The above definition of a complete normed vector space traces back to STEFAN
BANACH (1892-1945), a Polish mathematician whose contributions to functional anal-
ysis are fundamental. He noticed that the proper setting for most of the results which
in this connection are important are spaces which are equipped with the structure of
a vector space as well as a metric, and where the distance between two objects x and
y is derived from the difference x− y. The Banach fixed point theorem, which we will
see below, is still one of the most important fixed point theorems.

2.10 Examples. a) The space (Kn, ‖·‖p), where we equip Kn with the ‖·‖p-norm,
is a Banach space.

b) The function space C[a, b], equipped with the supremum norm ‖·‖∞, is a Banach
space for all−∞ < a < b <∞. This follows since uniformly convergent sequences
of continuous functions on the compact interval [a, b] converge to continuous
functions. (By Theorem IV.4.6 from Analysis I).
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c) If we equip the space C1[a, b] of continuously differentiable functions with the
supremum norm, then the result is a normed space which is not a Banach space,
cf. the exercises.

d) If we give C1[a, b] the norm

‖f‖ := ‖f‖∞ + ‖f ′‖∞,

then (C1[a, b], ‖·‖) is complete, i.e. a Banach space. The proof of this fact relies
on Theorem IV.4.7 from Analysis I, cf. the exercises.

e) The space `2 (pronounced “little ell two”), which consists of all sequences (an)n∈N ⊂
C which are square-summable, i.e. such that

∞∑
j=1

|aj|2 <∞,

is a Banach space when equipped with the norm

‖a‖2 :=
( ∞∑
j=1

|aj|2
)1/2

, a ∈ `2.

For the proof we refer tho the exercises. We can define a scalar product on `2 by
letting

〈a, b〉 =
∞∑
j=1

aibj

for a, b ∈ `2. Vector spaces equipped with a scalar product are called Hilbert
spaces if they are complete with respect to the norm induced by the scalar prod-
uct. So `2 is an example of a Hilbert space. Hilbert spaces play a decisive role
in quantum mechanics. The concept of a Hilbert space traces back to DAVID
HILBERT (1862-1943), who recognized that certain integral equations could be
translated into systems of linear equations in `2. The space `2 is often called the
Hilbert sequence space.

Fixed point theorems have many applications in mathematics. The following theo-
rem — the Banach fixed point theorem — says that a strict contraction on a complete
metric space has exactly one fixed point.

2.11 Theorem (Banach fixed point theorem). Let (M,d) be a complete metric
space, and let F : M → M be a strict contraction, i.e. there exists a constant q < 1
such that

d(F (x), F (y)) ≤ q · d(x, y) for all x, y ∈M.
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Then F has a unique fixed point r ∈ M , i.e. there exists exactly one r ∈ M such that
F (r) = r. Furthermore, for any x0 ∈M the sequence (xn)n∈N0 defined by

xn+1 := F (xn)

converges to r , i.e., limn→∞ d(xn, r) = 0.

Proof. The proof is analogous to the proof of II.2.13 from Analysis I, where one
replaces any occurrence of |x− y| by d(x, y).

�
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3 Compactness

We can define compactness for subsets of metric spaces just as we defined compactness
for subsets of Rn in Section III.3 from Analysis I, namely in terms of open covers. An
open cover of a subset K ⊂ M of a metric space (M,d) is a family {Oi}i∈I of open
subsets of M such that for every x ∈ K there exists at least one i ∈ I such that x ∈ Oi,
i.e. the family {Oi}i∈I should be such that K ⊂

⋃
i∈I Oi.

3.1 Definition. A subset K ⊂ M of a metric space (M,d) is called compact if every
open cover {Oi}i∈I of K has a finite subcover, i.e., if there exist i1, . . . , ir such that

K ⊂ Oi1 ∪ . . . ∪Oir

3.2 Examples. a) Any finite subset of a metric space is compact.

b) Let (xn)n∈N be a convergent sequence in a metric space, and let x := limn→∞ xn.
Then

K := {xn : n ∈ N} ∪ {x}

is compact.

c) A closed subset of a compact set is also compact, i.e. if K ⊂ M is compact in
M and A ⊂ K is closed, then A is compact. The proof is the same as he proof
of Lemma III.3.4.

On the basis of this abstract definition we will now characterize compact sets in
metric spaces. First, we recall the situation for Rn where, by the Heine-Borel theorem,
we could characterize the compact subset as the ones which are closed and bounded.

In this section we will see that also for metric spaces in general the compact subsets
are closed and bounded. However, the converse is in general false. An example is
provided by considering the space C([0, π],C) equipped with the supremum norm, cf.
Example 3.5 c) below.

However the following theorem shows that a subset of a metric space is compact if
and only if it is sequentially compact.

3.3 Theorem. Let K be a nonempty subset of a metric space M . The following
statements are equivalent:

(i) K is compact (covering compactness)

(ii) Every sequence (xn)n∈N ⊂ K has a convergent subsequence (xnj
)j∈N

(iii) Every sequence has a cluster point in K.
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Proof. (i) ⇒ (ii) is proved exactly as in Theorem III.3.11. (ii) ⇔ (iii) was already
proved in Proposition 2.2 d).

(ii)⇒ (i): Let {Oi}i∈I be an open cover of K. We divide the proof into three steps.

Step 1: There exists one δ > 0 such that for all x ∈ K there
exists i ∈ I satisfying Uδ(x) ⊂ Oi.

Assume the contrary. Then to each n ∈ N there exists xn ∈ K such that U1/n(xn) 6⊂
Oi for any i ∈ I. By the hypothesis, the sequence (xn)n∈N has a convergent subsequence
(xnj

)j∈N with x := limj→∞ xnj
∈ K, hence x ∈ Oj for some j ∈ I. Since Oj is open,

there exists ε > 0 such that Uε(x) ⊂ Oj. Now choose l ∈ N with l > 2/ε and
d(xl, x) < ε/2.
Then U1/l(xl) ⊂ Uε(x) (observe, if y ∈ U1/l(xl) then d(y, x) ≤ d(y, xl) + d(xl, x) < ε),
thus U1/l(xl) ⊂ Uε(x) ⊂ Oj, which is a contradiction to the assumption that U1/l 6⊂ Oi

for any i ∈ I.

Step 2: For any δ > 0 there exist x0, . . . , xn ∈ K with

K ⊂
n⋃
l=0

Uδ(xl).

Assume that the claim is false. Then there exists δ > 0 such that K 6⊂
⋃n
l=0 Uδ(xl)

for all n ∈ N and for any points x0, . . . , xn ∈ K. Let us choose x0 ∈ K; then K 6⊂
Uδ(x0). Therefore, there exists x1 ∈ K \ Uδ(x0) and, moreover,

K 6⊂ Uδ(x0) ∪ Uδ(x1) .

We obtain in this way a sequence (xn)n∈N ⊂ K satisfying

xn ∈ K \
( n−1⋃
l=0

Uδ(xl)
)

and K 6⊂
n⋃
l=0

Uδ(xl).

This sequence satisfies by construction

d(xn, xm) ≥ δ for all n,m ∈ N with n 6= m.

Hence, (xn)n∈N cannot have any Cauchy subsequence and, therefore, (xn)n∈N does not
have convergent subsequences. Contradiction!

Step 3: Let δ > 0 be as in Step 1 and x0, . . . , xn ∈ K as in Step 2. Then K ⊂⋃n
k=0 Uδ(xk) ⊂

⋃n
l=0Oil for appropriate i0, . . . , in ∈ I.

�

The above characterization of compact sets in metric spaces using sequential com-
pactness allows us to prove, exactly as in the case of Rn, that compact sets are always
closed and d-bounded. We explicitly state this important remark in the following
corollary.
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3.4 Corollary. A compact subset of a metric space (M,d) is closed and d-bounded.

3.5 Examples. a) Let M be an infinite set endowed with the discrete metric. Then
M is closed and d-bounded, but it is not compact.

b) We consider, as in Example 1.5 c), the space c of convergent sequences, endowed
with the supremum norm. Then the closed unit ball in c, i.e.

B1(0) := {(xn)n∈N : |xn| ≤ 1 for all n ∈ N}

is closed and bounded, but not compact. To see this, let en := (0, 0, . . . , 1, 0, . . . )
be the n-th unit vector in c, with 1 in the n-th position. Then ‖en − em‖∞ = 1
for all m 6= n, from which it follows that the sequence (en)n∈N ⊂ B1(0) has no
convergent susequence. Therefore, B1(0) is not compact.

c) The closed unit ball B1(0) := {f ∈ C[0, π] : ‖f‖∞ ≤ 1} of the Banach space
(C[0, π], ‖·‖∞) is not sequentially compact, hence not compact. Otherwise, the
sequence of functions (fj)j∈N ⊂ B1(0) defined by fj(x) = cos(jx)+i sin(jx) would
have a convergent subsequence, which can not be, since ‖fk − fl‖∞ = 2 for all
l 6= k.

d) One can prove that the closed unit ball B1(0) := {x ∈ V : ‖x‖ ≤ 1} of a normed
vector space V is compact if and only if dim(V ) <∞.

3.6 Corollary. A compact metric space (M,d) is complete.

Proof. Let (xn)n∈N ⊂M be a Cauchy sequence. By Theorem 3.3, it has a convergent
subsequence (xnj

)j∈N which converges in M . If x := limj→∞ xnj
, then for any ε > 0

there exists N0 ∈ N with

d(xnj
, xm) ≤ ε/2 for all m, j ≥ N0, and

d(x, xnj
) ≤ ε/2 for all j ≥ N0.

Hence
d(x, xm) ≤ d(x, xN0) + d(xN0 , xm) ≤ ε/2 + ε/2 = ε

for all m ≥ N0, that is x = limn→∞ xn ∈M .
�

In Section III.3 we studied in detail properties of continuous functions defined on
compact sets, as for example the theorem that a real-valued function attains its maxi-
mum (cf. Theorem III 3.9) or the theorem on uniform continuity (Theorem III 3.13).
In the following we obtain analogous results for continuous functions defined on com-
pact subsets of arbitrary metric spaces. Important results of modern analysis rely on
these properties.
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3.7 Theorem. [Continuous images of compact sets are compact] Let (M,dM), (N, dN)
be metric spaces and f : M → N be a continuous function. If M is compact, then
f(M) ⊂ N is also compact.

The proof is completely similar to the proof of Theorem III 3.7.

3.8 Corollary. If f : M → R is continuous and M is compact, then f attains a
minimum and a maximum.

The proof is analogous to the proof of Corollary III 3.8.

3.9 Corollary. If f : M → N is continuous and bijective and M is compact, then
f−1 : N →M is continuous as well.

Proof. By Theorem 2.5, it is enough to prove that f(A) is closed for any closed subset
A ⊂M . Since A is a closed subset of a compact set, it follows that A is also compact
by using Example 3.2 c). The above Theorem 3.7 implies that f(A) is compact as well,
hence closed, by applying Corollary 3.4.

�

We finish this section by considering uniformly continuous functions on metric
spaces. In analogy to Analysis I, a function f : M → N between two metric spaces
(M,dM), (N, dN) is called uniformly continuous if for every ε > 0 there exists δ > 0
such that

dN(f(x), f(y)) < ε for all x, y ∈M with dM(x, y) < ε.

The following result can then be proved exactly as Theorem III 3.13.

3.10 Theorem. Let f : M → N be a continuous function between two metric spaces
(M,dM), (N, dN). If M is compact, then f is uniformly continuous.
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4 Connectedness

The intermediate value theorem from Analysis I was an important piece in the con-
struction of analysis. We generalize this theorem, stated in Section III.1 for intervals,
to continuous functions defined on connected subsets of metric spaces.

4.1 Definition. A metric space M is called disconnected if there are two nonempty
and disjoint open subsets X and Y of M such that M = X ∪ Y . A space that is not
disconnected is called connected .

4.2 Examples. a) Rn is connected.

b) A subset M ⊂ R with at least two elements is connected if and only if it is an
interval. For the proof we refer to the exercises.

c) Q is disconnected, since

Q =
(
(−∞,

√
2) ∩ Q

)
∪
(
(
√

2,∞) ∩ Q
)
.

d) The set M = {x ∈ R2 : x2
1 − x2

2 = 1} is disconnected.

4.3 Theorem. Let f : M → N be a continuous function between two metric spaces
M and N . If M is connected, then f(M) is also connected.

Proof. Assume the contrary. Then there exist two nonempty and disjoint open sets
X and Y such that f(M) = X ∪ Y . It follows that M = f−1(X) ∪ f−1(Y ), that is a
contradiction.

�

The Intermediate Value Theorem in metric spaces is the following.

4.4 Theorem. Let M be a connected metric space, f : M → R a continuous function
and a, b ∈M . Then f takes any value between f(a) and f(b).

The proof is simple: if f(a) 6= f(b), then f(M) is an interval, by Example 4.2 b.

4.5 Examples. Let us consider the group O(n,R) of orthogonal n × n-matrices A,
where A ∈ O(n,R) if and only if A−1 = AT . Then O(n,R) ⊂ Rn2

is disconnected.
As a matter of fact, det : O(n,R)→ R is a polynomial in n2 variables, in particular

a continuous function. Moreover, det(diag(1, . . . , 1) = 1 and det(diag(−1, 1, . . . , 1)) =
−1. If O(n,R) were connected, then we could obtain a matrix A ∈ O(n,R) with
detA = 0, in contradiction to the fact that A is invertible.

Another concept of connectedness is also of importance.

4.6 Definition. A metric space M is called path-connected (also arcwise connected),
if for any two points a, b ∈ M there exists a continuous function γ : [α, β] → M with
γ(α) = a and γ(β) = b.
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Natural examples of path-connected sets in Rn for n ≥ 2 are

a) convex sets,

b) the unit sphere Sn−1 = {x ∈ Rn : ‖x‖2 = 1}, as well as

c) Rn \ {0}.

The following theorem gives the relation between connected and path-connected sets.

4.7 Theorem. (a) Any path-connected metric space is connected.

(b) Any connected open subset X of a normed vector space is path-connected.

The proof is not difficult and it is left as an exercise to the reader.
We finish this short section with an example which is of great importance for the

concept of orientation for vector spaces over R.

4.8 Example. a) Let G = GL(n,R) be the group of real n × n-matrices A with
detA 6= 0.

If we consider G as a subspace of Rn2
, then G is disconnected.

In fact, assuming that G is connected, we get that the image of the continu-
ous function det : G → R is also connected. But det(G) = R \ {0}, which is
disconnected. We have got a contradiction.

b) Considerably more difficult to prove is the fact that the subgroup GL+(n,R) of
real n× n-matrices with detA > 0 is connected.

The connectedness of metric space is an important topological invariant. Thus, if
M and N are homeomorphic spaces, then M is connected if and only if N is connected.
Two spaces M and N are called homeomorphic if there exists a bijective, continuous
function from M to N such that its inverse is also continuous.

Already in 1878, Cantor proved hat there is a bijection between R and R2; in 1890,
Peano proved that there exists a continuous surjection from the interval [0, 1] onto the
square [0, 1]× [0, 1]. Peano’s function is not bijective and Cantor’s construction is not
continuous, so the question if there exists a homeomorphic mapping from Rn → Rm

for n 6= m is natural. Brouwer proved in 1901 that such a mapping can not exist. We
give here the proof only for the special case m = 1.

4.9 Theorem. Let n ≥ 2. Then Rn is not homeomorphic to R.

Proof. First we recall: For n ≥ 2, Rn \ {0} is connected. On the other hand, by
Example 4.2 b), for any x ∈ R, the set R \ {x} is disconnected.

Now: If we had a homeomorphism f : Rn → R, then we would get one between
Rn \ {0} and R \ {0} in contradiction to the fact that, by Theorem 4.3, continuous
images of connected sets are connected.

�
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Chapter VII

Differentiation of functions of
several variables

In this chapter the theory of differentiation of a function of one real variable will be
extended to the case of functions of several real variables. Since now we cannot form
a difference quotient we start with the equivalent definition via linear approximation.
Comparing our discussions in the one-variable case with the situation of the multi-
variable case, the latter one turns out to be distinctly more complicated, since the
linear maps have a richer structure than in the one-variable case.

1 Differentiable maps

In this section let Rn and Rm be normed spaces and f : U → Rm, where we all the time
assume U ⊂ Rn to be open. We recall that L(Rn,Rm) is the space of all linear maps
from Rn into Rm, which is normed via the operator norm introduced in Section VI.2.
Since Rn and Rm have finite dimension, the discussion in Section VI.2 implies that

(i) every linear map from Rn into Rm is continuous, and

(ii) L(Rn,Rm) is a Banach space.

1.1 Definition. Let U ⊂ Rn, x0 ∈ U (x0 is an interior point of U), and f : U → Rm

be a function. f is called differentiable at x0, if there exist maps A ∈ L(Rn,Rm) and
r : U → Rm such that

f(x) = f(x0) + A(x− x0) + r(x), x ∈ U,

with

lim
x→x0

r(x)

‖x− x0‖
= 0.

157
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1.2 Remarks. a) As norm on Rn we choose the Euclidean norm. We recall that
the above definition is independent of a particular norm on Rn on account of
Theorem VI.1.10.

b) In the case n = m = 1 the above definition is consistent with that from Sec-
tion IV.1.

c) If f : U ⊂ Rn → Rm is differentiable at x0 ∈ U , then the linear map A from
Definition 1.1 is uniquely determined (exercise).

d) The unique map A from Definition 1.1 is called derivative or differential of f at
x0.

Notation: A = f ′(x0) or A = Df(x0).

e) If one chooses the canonical bases in Rn and Rm, then A ∈ L(Rn,Rm) is repre-
sented by a matrix (aij). In this case we have

Ax =

a11 . . . a1n
...

. . .
...

am1 . . . amn


x1

...
xn

 , x ∈ Rn

In the following we tacitly identify the linear map A with its matrix representation
(aij)m×n.

1.3 Example. Let B = (bij) ∈ Mn(R) be a symmetric matrix and f : Rn → R be
defined by

f(x) := 〈x,Bx〉 :=
n∑

i,j=1

bijxixj , 〈x, y〉 =
n∑
j=1

xjyj.

Then we have for x0, h ∈ Rn, x = x0 + h

f(x) = f(x0 + h) = 〈x0 + h,Bx0 +Bh〉 = 〈x0, Bx0〉+ 〈x0, Bh〉+ 〈h,Bx0〉︸ ︷︷ ︸
=2〈Bx0,h〉

+〈h,Bh〉

= f(x0) + 2〈Bx0, x− x0〉+ 〈x− x0, B(x− x0)〉︸ ︷︷ ︸
=:r(x)

= f(x0) + (2Bx0)
T · (x− x0) + r(x).

By the Cauchy-Schwarz inequality we have

|r(x)| ≤ ‖x− x0‖‖B(x− x0)‖ ≤ ‖B‖‖x− x0‖2

and, therefore,
|r(x)|
‖x− x0‖

≤ ‖B‖‖x− x0‖
x→x0−→ 0,
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since B is bounded. We conclude that f is differentiable at x0 ∈ Rn and

f ′(x0) ≡ Df(x0) = (2Bx0)
T ∈ L(Rn,R).

♦

1.4 Theorem. Let U ⊂ Rn be open, f : U → Rm be differentiable at x0 ∈ U . Then f
is continuous at x0.

Proof. For x ∈ U we have

f(x) = f(x0) +Df(x0)(x− x0) + r(x).

Since the linear map Df(x0) is continuous by Theorem VI.2.6, we clearly have
Df(x0)(x − x0)

x→x0−→ 0. Furthermore, by definition, limx→x0 r(x) = 0 and, therefore,
limx→x0 f(x) = f(x0).

�

Suppose one knows that f : U → Rm is differentiable at x0 ∈ U . Then one is interested
in computing explicitly the derivative Df(x0) ∈ L(Rn,Rm).

To solve this problem we pursue the following idea: Since Df(x0) is linear, it is
sufficient to know Df(x0) on a basis {v1, . . . , vn} of Rn, where we normalize the vj by
assuming ‖vj‖ = 1

More generally, let us compute Df(x0)v, some v ∈ Rn, ‖v‖ = 1. Set x = x0 + tv,
t ∈ R. Since U is open, there exists an ε > 0 such that x ∈ U for all t with |t| < δ.
Therefore, with the notation from Definition 1.1

Df(x0)v =
f(x0 + tv)− f(x0)

t
− r(x)

t
.

Since limt→0
r(x)
t

= 0 we obtain

Df(x0)v = lim
t→0

f(x0 + tv)− f(x0)

t
.

This motivates the following definition.

1.5 Definition. Let U ⊂ Rn be open f : U → Rn be a function, x0 ∈ U and v ∈ Rn,
‖v‖2 = 1. If

Dvf(x0) := lim
t→0

f(x0 + tv)− f(x0)

t
∈ Rm

exists, then Dvf(x0) is called directional derivative of f at x0 in the direction v.

1.6 Theorem. Let f : U ⊂ Rn → Rm be differentiable at x0 ∈ U . Then Dvf(x0) exists
for all v ∈ Rn, ‖v‖2 = 1, and we have

Dvf(x0) = Df(x0) · v.
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Proof. By hypothesis we have for t 6= 0

f(x0 + tv) = f(x0) +Df(x0)tv + r(x0 + tv), and lim
t→0

r(x0 + tv)

t
= 0.

Hence f(x0+tv)−f(x0)
t

= Df(x0)v + r(x0+tv)
t

and thus for t→ 0 the assertion.
�

Observe, the converse of Theorem 1.6 is not true in general. Consider e.g.

f : R2 → R, f(x, y) :=

{
x2y
x2+y2

(x, y) 6= (0, 0)

0 (x, y) = (0, 0).

In Definition 1.5 we defined the directional derivative of a function with respect to
an arbitrary direction. The derivatives in the direction of the coordinate axes are
particularly distinguished.

1.7 Definition. a) For the derivatives in the direction of the coordinate axes ej, j =
1, . . . , n, we write

∂jf(x0) :=
∂f

∂xj
(x0) := Dej

f(x0) = lim
t→0

f(x0 + tej)− f(x0)

t
for 1 ≤ j ≤ n,

and call ∂jf(x0) partial derivative of f at x0 (with respect to xj).

b) A function f : U ⊂ Rn → Rm is called partially differentiable at x0, if all partial
derivatives

∂f

∂xj
=

∂jf1(x0)
...

∂jfm(x0)

 , 1 ≤ j ≤ n, exist at x0.

c) Analogously, f is called continuously partially differentiable at x0 if all ∂fi

∂xj
, 1 ≤

j ≤ n, 1 ≤ i ≤ m, are continuous at x0.

If ∂jfi(x0) exists for some i, j, 1 ≤ j ≤ n, 1 ≤ i ≤ m, then

∂jfi(x0) = lim
t→0

1

t

(
fi(x0 + tej)− fi(x0)

)
.

Thus f is partially differentiable at x0 with respect to xj if the map

t 7→ f(x0,1, . . . , x0,j−1, t, x0,j+1, . . . , x0,n)

as a function of the 1-dimensional variable t is differentiable (in the 1-dimensional
sense) at x0,j, x0 = (x0,1, . . . , x0,n). If one chooses the canonical bases in Rn and Rm

and if one identifies A ∈ L(Rn,Rm) with the matrix (aij)m×n), then we get the following
representation for the derivative.
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1.8 Theorem. If f = (f1, . . . , fm) : U ⊂ Rn → Rm is differentiable at x0 ∈ U , then

Df(x0) =


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fm

∂x1
. . . ∂fm

∂xn


m×n

.

Proof. For f1 : U ⊂ Rn → Rm and h = (h1, . . . , hn) =
∑n

j=1 hjej ∈ Rn we have the
representation

Df1(x0)h =
n∑
j=1

hjDf1(x0)ej =
n∑
j=1

∂f1

∂xj
(x0)hj

and analogous representations for Dfj(x0). The assertion now follows, since the func-
tion f = (f1, . . . , fm) is differentiable at x0 if and only if each coordinate function fj is
differentiable at x0.

�

1.9 Definition. a) The matrix which was defined in Theorem 1.8 is called Jacobi
matrix or functional matrix

Df(x0) := Jf (x0) :=
∂(f1, . . . , fm)

∂(x1, . . . , xn)
:=


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fm

∂x1
. . . ∂fm

∂xn

 .

b) If m = 1, then

grad f(x0) :=

(
∂f

∂x1

(x0), . . . ,
∂f

∂xn
(x0)

)
is called gradient (gradient vector) of f at x0.
Notation: ∇f(x0) := grad f(x0) (∇ is pronounced ‘nabla’).

1.10 Remark. If f : U ⊂ Rn → R is differentiable at x0 ∈ U , then ∇f(x0) indicates
the direction of the steepest slope of f at x0 and −∇f(x0) the direction of the steepest
decay. This follows from the Cauchy-Schwarz inequality because for v ∈ Rn, ‖v‖2 = 1,
we have

|Dvf(x)| = |Df(x0)v| = |〈grad f(x0), v〉| ≤ ‖grad f(x0)‖2‖v‖2

Now the equality sign holds if and only i grad f(x0) = λv for some λ ≥ 0.

Example. The function f : R3 → R, f(x, y, z) := x2 sin(y
2
) + e3z, has the gradient

grad f(x, y, z) =

(
2x sin

y

2
,
x2

2
cos

y

2
, 3e3z

)
.
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In the following we give a sufficient criterion for the differentiability of a function f =
(f1, . . . , fm) : U ⊂ Rn → Rm at x0 ∈ U which is easier to handle than Definition 1.1.

Necessarily, all partial derivatives must exist — see Definition 1.9; otherwise f
would not be differentiable (cf. Theorem 1.8) at x0. Also it is necessary that

lim
x→x0

r(x)

‖x− x0‖
= 0, where r(x) = f(x) = f(x0)−Df(x0)(x− x0).

It is interesting to note that the existence of all directional derivatives Dvf(x0), ‖v‖2 =
1, does not imply even the continuity of f at x0. Consider, e.g., the function

f : R2 → R, f(x, y) =

{
xy2

x2+y4
x 6= 0

0 x = 0.

Then Dvf(0, 0) exists for all v ∈ R2 with ‖v‖2 = 1, but f is not continuous at (0, 0) —
see exercises.

But we have

1.11 Theorem. Let U ⊂ Rn be open, x0 ∈ U , and let f = (f1, . . . , fm) : U → Rm be
continuously partially differentiable in a neighborhood of x0. Then f is differentiable
at x0.

Proof. First we note that f is differentiable at x0 if and only if all functions f1, . . . , fm
are differentiable at x0. Hence, without loss of generality, let f : U ⊂ Rn → R be
real-valued. For h = (h1, . . . , hn) ∈ Rn set

z0 := x0

z1 := z0 + h1e1

z2 := z1 + h2e2
...

zn := zn−1 + hnen = x0 + h

Then ‖x0 − zj‖2 ≤ ‖h‖2 for 0, . . . , n. Hence zj ∈ U for all j = 0, . . . , n if h is small
enough. The mean value theorem from Section IV.2 now implies

f(x0 + h)− f(x0) =
(
f(zn)− f(zn−1)

)
+
(
f(zn−1)− f(zn−2)

)
+ · · ·+

(
f(z1)− f(z0)

)
=

∂f

∂xn
(ξn)hn +

∂f

∂xn−1

(ξn−1)hn−1 + · · ·+ ∂f

∂x1

(ξ1)h1 (∗)

for appropriate ξj ∈ (zj−1, zj). Therefore,

|f(x0 + h)− f(x0)− grad(f(x0) · h| ≤
n∑
j=1

∣∣∣∣ ∂f∂xj (ξj)− ∂f

∂xj
(x0)

∣∣∣∣ · |hj|
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and hence

1

‖h‖2
|f(x0 + h)− f(x0)− grad f(x0) · h| ≤

n∑
j=1

∣∣∣∣ ∂f∂xj (ξj)− ∂f

∂xj
(x0)

∣∣∣∣ h→0−→ 0

since the partial derivatives ∂f
∂xj
, j = 1, . . . , n, are continuous at x0.

�

1.12 Remarks. a) The equation (∗) implies immediately:
If the partial derivatives ∂jfk : U → R, 1 ≤ j ≤ n, 1 ≤ k ≤ m, are bounded in a
neighborhood of x0, then f is continuous at x0.

b) For f = (f1, . . . , fm) : U ⊂ Rn → Rm the following statements are equivalent:

(i) f is continuously partially differentiable, i.e., all partial derivatives exist and
are continuous.

(ii) f is continuously differentiable, i.e., f is differentiable and f ′ = Df : U →
L(Rn,Rm) is continuous.

If f is continuously differentiable on U or continuously partially differentiable, we use
the notation f ∈ C1(U,Rm) which by the above makes sense.

We summarize the results obtained above in the following diagram.

f is continuously
differentiable

⇓
f is differentiable

⇓
all directional derivatives

Dvf exist
⇓

f is partially differentiable

⇐⇒ f is continuously partially
differentiable

⇓
f is partially differentiable with

locally bounded partial derivatives
⇓

f is continuous
⇓

f is continuous with respect to each
coordinate
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2 Differentiation rules

We begin this section with the chain rule for differentiable functions

2.1 Theorem (Chain rule). Let U ⊂ Rn and V ⊂ Rm be open, and let f : U → Rm

and g : V → Rl be mappings with f(U) ⊂ V . Assume that f is differentiable in x0 ∈ U
and g is differentiable in y0 := f(x0). Then the mapping g◦f : U → Rl is differentiable
in x0 and we have

D(g ◦ f)(x0) = Dg(f(x0)) ·Df(x0).

Written in terms of matrices this is

Jg◦f (x0) = Jg(f(x0)) · Jf (x0).

In the above theorem “ · ” is used once to signify composition of linear transforma-
tions and once to signify multiplication of matrices.

Proof. We set A := Df(x0) ∈ L(Rn,Rm) and B := Dg(f(x0)) ∈ L(Rm,Rl). By
assumption we have

f(x0 + h) = f(x0) + Ah+ rf (x)

and

g(y0 + k) = g(y0) +Bk + rg(y)

where x = x0 + h ∈ U and y = y0 + k ∈ V , with rf and rg satisfying

lim
h→0

rf (x)

‖h‖
= 0, lim

k→0

rg(y)

‖k‖
= 0.

Choose k := f(x0 + h)− f(x0) = Ah+ rf (x) to get

(g ◦ f)(x0 + h) = g
( =y0︷ ︸︸ ︷
f(x0) +

=k︷ ︸︸ ︷
Ah+ rf (x)

)
= g(f(x0)) +BAh+Brf (x)︸ ︷︷ ︸

=Bk

+rg(y).

We must show that

lim
h→0

Brf (x)

‖h‖
= 0 (∗)

and

lim
h→0

rg(y)

‖h‖
= 0. (∗∗)
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We know by Theorem VI.2.6 that B ∈ L(Rm,Rl) is continuous, and so

lim
h→0

Brf (x)

‖h‖
= B · lim

h→0

rf (x)

‖h‖
= B0 = 0,

which gives (∗). By Theorem VI.2.6 we also know that A ∈ L(Rn,Rm) is continuous,
and furthermore that there exists a constant M > 0 with

‖Ah‖Rm ≤M‖h‖Rn

for all h ∈ Rn. Thus

‖k‖ = ‖Ah+ rf (x)‖ ≤
(
M +

‖rf (x)‖
‖h‖

)
‖h‖,

and so
‖rg(y)‖
‖h‖

=
‖rg(y)‖
‖k‖

· ‖k‖
‖h‖
≤ ‖rg(y)‖
‖k‖

·
(
M +

‖rf (x)‖
‖h‖

)
.

Note that k = f(x0 + h)− f(x0)→ 0 when h→ 0 and that by hypothesis ‖rg(y)‖
‖k‖ → 0

for k → 0, thus

lim
h→0

rg(y)

‖h‖
= 0.

�

2.2 Example. We consider the functions f : R2 → R3 and g : R3 → R2 given by

f(x, y) :=
(
x2, xy, xy2

)
g(u, v, w) :=

(
sinu, cos(uvw)

)
.

The function h := g◦f : R2 → R2 given by h(x, y) =
(
sin x2, cos(x4y3)

)
is differentiable,

and we have

Jh(x, y) =

(
2x cosx2 0

−4x3y3 sin(x4y3) −3x4y2 sin(x4y3)

)
. (2.1)

For the derivatives of f and g we have

Jg(u, v, w) =

(
cosu 0 0

−vw sin(uvw) −uw sin(uvw) −uv sin(uvw)

)
and

Jf (x, y) =

2x 0
y x
y2 2xy

 ,

and we can verify that the product of these matrices at the point (u, v, w) = f(x, y)
fits with (2.1).
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From the chain rule we can now relatively easy get differentiation rules for sums
and products of differentiable functions.

2.3 Corollary. Let U ⊂ Rn be open and let f, g : U → Rm be differentiable in x0 ∈ U .
Then for arbitrary α, β ∈ R the function αf + βg is differentiable in x0, and we have

D(αf + βg)(x0) = αDf(x0) + βDg(x0).

Proof. We let F :=
(
f
g

)
: U → Rm×Rm and G : Rm×Rm → Rm, G(u, v) = αu+βv.

Then G is linear and hence differentiable with derivative DG(u, v) = G for all u, v ∈
Rm, and F is differentiable in x0 with derivative DF (x0) =

(
Df(x0)
Dg(x0)

)
. The chain rule

implies that G◦F given by (G◦F )(x) = αf(x)+βg(x) is differentiable in x0, and that

D(G ◦ F )(x0) = DG
(
F (x0)

)
·DF (x0)

= G

(
Df(x0)
Dg(x0)

)
= α ·Df(x0) + β ·Dg(x0).

�

2.4 Corollary (Product rule). Let U ⊂ Rn be open and let f, g : U → R be differ-
entiable in x0 ∈ U . Then f · g is differentiable in x0, and we have

D(f · g)(x0) = f(x0)Dg(x0) + g(x0)Df(x0).

Proof. We let F :=
(
f
g

)
: U → R × R and G : R × R → R, G(α, β) := α · β. Then

(f · g)(x) = (G ◦ F )(x), and the result follows from the chain rule as above.
�

2.5 Corollary. Let J ⊂ R be an interval, let V ⊂ Rm be open, let γ = (γ1, . . . , γm) :
J → V be differentiable in t0 ∈ J and let f : V → R be differentiable in x0 = γ(t0).
Then f ◦ γ : J → R is differentiable in t0, and we have

D(f ◦ γ)(t0) = 〈grad f(γ(t0)), γ
′(t0)〉

=
m∑
j=1

∂f

∂xj
(γ(t0))γ

′
j(t0).

For the proof we refer to the exercises.

2.6 Remark. Let J ⊂ R be an interval. Continuous functions γ : J → Rm are
also called curves . We will study these in more detail later. At present we remark
that if we think of t ∈ J as the time and γ(t) as the position, then γ describes the
movement of a point in Rm in time. Each curve J → Rm can be described by an
m-tuple γ = (γ1, . . . , γm), and for a differentiable curve γ we have

γ′(t0) =
(
γ′1(t0), . . . , γ

′
m(t0)

)T ∈ L(R,Rm) = Rm.
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The vector γ′(t0) is called the tangent vector to the curve γ in t0.
Via the above formulation of the chain rule one can interpret the concepts gradient

and level set geometrically as follows. Let U ⊂ Rn be open, f : U → R be differentiable
and let γ : J → U be a differentiable curve defined on an interval J ⊂ R. If γ lies on
a level set of f , i.e., if there exists a constant c ∈ R such that f(γ(t)) = c for all t ∈ J ,
then the gradient of f in the point γ(t) is orthogonal to the tangent vector γ′(t). That
is,

grad f(γ(t)) ⊥ γ′(t), t ∈ J.

If U ⊂ R2, then we can interpret the graph of f as a “landscape” over U with f(x)
as the “elevation” above x. The statement above then says that the gradient of f in
x is perpendicular to the curve through x which follows the landscape with constant
elevation. Furthermore, grad f(x) points in the direction of the steepest increase of f ,
and − grad f(x) points in the direction of the steepest descent.

2.7 Example. A differentiable function f : Rn \ {0} → R is called positively homoge-
neous of degree α ∈ R if

f(tx) = tαf(x)

for all x ∈ Rn \ {0} and all t ∈ (0,∞). Corollary 2.5 implies that

〈grad f(x), x〉 = αf(x)

for all x ∈ Rn \ {0}. This identity is also called Euler’s relation. For the proof of this
relation we refer to the exercises.

A further consequence of the chain rule is the following mean value theorem. As
in the case for one variable one can use this to express the difference between function
values via the derivative.

2.8 Theorem (Mean Value Theorem). Let U ⊂ Rn be open and let f : U → R be
a differentiable function. Let a, b ∈ U such that the set ab := {a+ t(b− a) : t ∈ [0, 1]}
lies in U . Then there exists ξ ∈ ab such that

f(b)− f(a) = f ′(ξ)(b− a).

Proof. Define g : [0, 1] → U by g(t) = a + t(b − a). Then g is differentiable with
g′(t) = b−a for all t ∈ (0, 1). By Corollary 2.5 we know that also F = f ◦g : [0, 1]→ R
is differentiable with F ′(t) = f ′(g(t))(b − a) for all t ∈ (0, 1). By the mean value
theorem for real-valued functions of one variable, Theorem IV.2.4 from Analysis I,
there exists τ ∈ (0, 1) such that

f(b)− f(a) = F (1)− F (0) = F ′(τ) = f ′(g(τ))(b− a).

Thus we let ξ := g(τ) ∈ ab.
�
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For convex sets we have the following version of the mean value theorem.

2.9 Theorem. Let U ⊂ Rn be open and convex. If f : U → R is differentiable such
that there exists L ≥ 0 with

‖grad f(x)‖ ≤ L

for all x ∈ U , then
|f(x)− f(y)| ≤ L‖x− y‖

for all x, y ∈ U . That is, f is Lipschitz continuous with Lipschitz constant L.

Proof. By the mean value theorem and the Cauchy-Schwarz inequality we have for
suitable ξ ∈ xy

|f(x)− f(y)| = 〈grad f(ξ), x− y〉
≤ ‖grad f(ξ)‖‖x− y‖
≤ L‖x− y‖ .

�

2.10 Corollary. Let U ⊂ Rn be an open set such that for any two elements x, y ∈ U
there exist points x = z0, z1, . . . , zl = y such that zk−1zk ⊂ U for all k = 1, . . . , l. Let
f : U → R be differentiable. Then f is constant if and only if grad f(x) = 0 holds for
all x ∈ U .

Proof. See exercises.
�

We end this section with a useful variant of the mean value theorem which requires
the stronger assumption of the mapping being continuously differentiable.

2.11 Theorem (Integral form of the mean value theorem). Let U ⊂ Rn be open
and let f : U → R be continuously differentiable. Then

f(y)− f(x) =

∫ 1

0

Df(x+ t(y − x))(y − x)dt

for all x, y ∈ U with xy ⊂ U .

Proof. We let ϕ(t) := f(x+t(y−x)) for t ∈ [0, 1]. Then ϕ is continuously differentiable,
and the fundamental theorem of differential calculus implies that

f(y)− f(x) = ϕ(1)− ϕ(0)

=

∫ 1

0

ϕ′(t)dt

=

∫ 1

0

Df(x+ t(y − x))(y − x)dt.

�
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3 Higher Derivatives

When considering a function f : U ⊂ Rn → R with partial derivatives ∂f
∂x1
, . . . , ∂f

∂xn
,

it can be the case that these partial derivatives are again partially differentiable. The

functions ∂
∂xj

(
∂f
∂xi

)
)

are called second order partial derivatives of f . We often write

them as
∂2f

∂xj∂xi
.

In general a function f : U → R is called (` + 1)-times (continuously) partially differ-
entiable if f is `-times partially differentiable and all `-th order partial derivatives are
(continuously) partially differentiable. In the following the vector space

Ck(U,R) := {f : U → R : f is k times continuously partially differentiable}

will play an important role. If f is k times continuously partially differentiable, we will
also write

∂kf

∂xik · · · ∂xi1
:= fxik

···xi1
:= ∂ik · · · ∂i1f :=

∂

∂xik
· · · ∂

∂xi1
f

and

∂i · · · ∂i︸ ︷︷ ︸
k times

=:
∂k

∂xki

In the following example we calculate the second partial derivatives of the function
f : R2 → R defined by f(x, y) := x2 sin y. We have

fx(x, y) = 2x sin x fy(x, y) = x2 cos y

fxx(x, y) = 2 sin y fxy(x, y) = 2x cos y

fyx(x, y) = 2x cos y fyy(x, y) = −x2 sin y

and we observe that in this example, fxy = fyx holds. In general this is not the case,
as the following example shows.

3.1 Example. Let f : R2 → R be defined by

f(x, y) :=

{
x3y−xy3
x2+y2

(x, y) 6= (0, 0)

0 (x, y) = (0, 0).

Then f ∈ C1(R2,R), and the partial derivatives fxy and fyx exist everywhere in R2

and are continuous on R2 \ {(0, 0)}, but

fxy(0, 0) = 1 and fyx(0, 0) = −1.

We verify this in the exercises.



170CHAPTER VII. DIFFERENTIATION OF FUNCTIONS OF SEVERAL VARIABLES

It can even happen that only one of the two partial derivatives ∂ijf and ∂jif ex-
ists. The following theorem, due to H. A. SCHWARZ (1843-1921) ensures that such
phenomena cannot occur if ∂ijf or ∂jif is continuous.

3.2 Theorem (Schwarz’ Theorem). Let U ⊂ Rn be open, let i, j ∈ {1, . . . , n}, and
let f : U → R have partial derivatives ∂if , ∂jf , and ∂ijf in a neighborhood of x0 ∈ U .
If ∂ijf is continuous in x0, then ∂jif(x0) exists and

∂ijf(x0) = ∂jif(x0).

Proof. We choose δi, δj > 0 so small that x0 + sei + tej ∈ U for all

(s, t) ∈ (−δi, δi)× (−δj, δj) =: Q ⊂ R2.

Then the function ϕ : Q→ R given by

ϕ(s, t) := f(x0 + sei + tej)

is well defined and partially differentiable. Furthermore, the second order partial
derivative ∂1∂2ϕ exists, and is also continuous in (0, 0). We must show that ∂2∂1ϕ(0, 0)
exists, and that

∂1∂2ϕ(0, 0) = ∂2∂1ϕ(0, 0)

By definition we have

∂2∂1ϕ(0, 0) =

[
d

dt

(
lim
s→0

ϕ(s, t)− ϕ(0, t)

s

)]
t=0

= lim
t→0

lim
s→0

1

s

[ϕ(s, t)− ϕ(0, t)]− [ϕ(s, 0)− ϕ(0, 0)]

t
.

We apply the mean value theorem to the difference quotient with respect to the second
variable t and get a ξ ∈ (0, 1) such that

1

s

[ϕ(s, t)− ϕ(0, t)]− [ϕ(s, 0)− ϕ(0, 0)]

t

=
1

s
∂2[ϕ(s, ξt)− ϕ(0, ξt)] =

1

s
[∂2ϕ(s, ξt)− ∂2ϕ(0, ξt)].

Now we notice that our result is again a difference quotient for ∂2ϕ with respect to the
variable s, i.e., the first variable. By assumption ∂2ϕ is differentiable with respect to
the first variable, and by the mean value theorem there exists η ∈ (0, 1) such that

1

s
[∂2ϕ(s, ξt)− ∂2ϕ(0, ξt)] = ∂1∂2ϕ(ηs, ξt).

Our assumptions also imply that ∂2∂1ϕ is continuous in (0, 0), and hence

∂2∂1ϕ(0, 0) = lim
t→0

lim
s→0

∂2∂1ϕ(ηs, ξt) = ∂1∂2ϕ(0, 0).

�
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3.3 Corollary. Let U ⊂ Rn be open and let f ∈ Ck(U,R) for some k ∈ N. Then

∂

∂xik
· · · ∂f

∂xi1
=

∂

∂xiπ(k)

· · · ∂f

∂xiπ(1)

for every permutation π : {1, . . . , k} → {1, . . . , k}.

The proof proceeds by induction on k, and is left to the reader.
We will now see how we can view higher derivatives of a k-times continuously

differentiable function f : Rn → R as symmetric multilinear maps

Dkf(x0) : Rn × · · · × Rn → R.

This then provides a generalization of the differential. We start with the case k = 2,
and consider twice continuously differentiable functions, i.e., differentiable f such that
Df is continuously differentiable. We define a bilinear form for x0 ∈ Rn by letting
D2f(x0) be the function given by

D2f(x0)(u, v) := Du(Dvf)(x0)

for (u, v) ∈ Rn × Rn, u 6= 0, v 6= 0, and

D2f(x0)(u, v) := 0

if u = 0 or v = 0 (Here, we rely on an extension of the definition of the directional
derivative from the case ‖v‖2 = 1 to the case v 6= 0 ).

By Theorem 1.6, we know that the directional derivative Dvf(x0) of f in the direc-
tion v is given by

Dvf(x0) = Df(x0)v.

Furthermore, the function Dvf is differentiable in x0, since Df is. By Theorem 1.6 we
can conclude that Dvf has a directional derivative in the direction u at the point x0

and that

Du(Dvf)(x0) = D(Dvf)(x0) · u

=
n∑

i,j=1

∂ijf(x0)viuj.

The mapping
(u, v) 7→ DuDvf(x0)

is linear in u and v, and by Schwarz’ theorem it is also symmetric. It is called the
second order differential of f in x0. Relative to the canonical basis for Rn this map
can be represented by the matrix

Hf (x0) =

∂11f(x0) · · · ∂1nf(x0)
...

. . .
...

∂n1f(x0) · · · ∂nnf(x0)

 .
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This matrix is called the Hessian of f at x0. By the theorem of Schwarz the Hessian
is a symmetric matrix, and we have

D2f(x0)(u, v) = uTHf (x0)v. (3.1)

In connection with our later treatment of Taylor’s theorem we will study the geometric
meaning of the second derivative in more detail.

For arbitrary k ∈ N we define Dkf(x0) analogously to the case k = 2 by

Dkf(x0)(v
1, . . . , vk) := Dv1 . . . Dvkf(x0)

for v1, . . . , vk ∈ Rn. This mapping is linear in each of the variables v1, . . . , vk.
In this connection it is useful to introduce the concept of a multi-index . By this we

mean an n-tuple α1, . . . , αn ∈ Nn
0 . The non-negative integer

|α| := α1 + · · ·+ αn

is called the order of α. We further define

α! := α1!α2! . . . αn!,

and for x = (x1, . . . , xn) ∈ Rn we let

xα := xα1
1 x

α2
2 . . . xαn

n , D0f := f

Dαf := Dα1
1 Dα2

2 . . . Dαn
n f :=

∂|α|

∂xα1
1 ∂x

α2
2 . . . ∂xαn

n

f.

(In our definition of xα, we use the convention 00 = 1.)
We let P be a polynomial of degree m ∈ N with n variables ξ1, . . . , ξn, i.e.

P (ξ) =
∑
|α|≤m

aαξ
α.

If we replace the variables ξi by differential operators ∂i we get a so-called linear
differential operator P (D) of the form

P (D) : Cm(Rn,R)→ C(Rn,R), P (D) :=
∑
|α|≤m

aαD
α

with coefficients aα.

3.4 Examples. a) A very important example of a differential operator is the Laplace
operator defined by

∆ := ∂2
1 + · · ·+ ∂2

n.

The corresponding polynomial P is in this case given by P (ξ) = ξ2
1 + · · ·+ ξ2

n.



3. HIGHER DERIVATIVES 173

b) For h = (h1, . . . , hn) ∈ Rn we consider the polynomial p(ξ) = h1ξ1 + · · · + hnξn
and put

∇h := P (D) = h1∂1 + · · ·+ hn∂n.

c) For a = (a1, . . . , an) ∈ Rn and l ∈ N we have

(a1 + · · ·+ an)
l =

∑
|α|=l

l!aα

α!
.

For a proof of this fact (by induction) we refer to the lecture.

d) For h = (h1, . . . , hn) and l ∈ N we have

(∇h)l = (h1∂1 + · · ·+ hn∂n)
l

= l!
∑
|α|=l

hα∂α

α!
.

One can also identify the Laplace operator with the trace of the Hessian Hf (x) of
a twice continuously differentiable function, i.e., we have

tr(Hf (x)) =
n∑
i=1

∂2
i f(x) = ∆f(x). (3.2)

Because of this connection we can transfer the rotation invariance of the trace of
a matrix to rotation invariance of the Laplace operator. Specifically, we have the
following theorem.

3.5 Theorem (Rotation invariance of the Laplace operator). For each orthonor-
mal basis v1, . . . , vn of Rn we have

∆ = ∂2
v1

+ · · ·+ ∂2
vn
.

Proof. By equation (3.1) we have

∂vi
∂vi
f(x) = vTi Hf (x)vi = eTi H̃ei,

with H̃ = V THfV , V = (v1, . . . , vn), and with e1, . . . , en the vectors in the canonical
basis. Hence

n∑
i=1

∂2
vi
f = tr(H̃).

Since V by assumption is orthogonal we know that the matrices Hf and H̃ have the
same trace, i.e.

tr(H̃) = tr(Hf ).

Thus the claim follows by (3.2).
�
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The Laplace operator (also called Laplacian) appears in many differential equations
in analysis and in physics. We mention the following examples:

a) The Laplace equation

∆u = 0.

This equation describes diffusion processes and makes frequent appearances in
probability theory. The solutions of this equation are called harmonic functions .
In dimension 2, these form the starting point of the subject of complex analysis.

b) The wave equation

utt = c2∆u

describes the oscillation of an elastic body.

c) The heat equation

ut = c∆u

describes the propagation of heat in a homogeneous medium.

d) The Schrödinger equation

ut = i∆u

is the central equation of quantum mechanics.

In equations b), c) and d) above, u is a function of n+ 1 variables x1, . . . , xn, t, with

∆ = ∂2
1 + · · ·+ ∂2

n

and with t meant to be interpreted as the time. c is a constant.

We round off this section with the calculation of ∆f for a rotation symmetric
function. Let F ∈ C2(J,R), with J ⊂ (0,∞) an interval. We let

f(x) := F (‖x‖2)

and r := ‖x‖2.
Then

∂if(x) = F ′(r)
xi
r

and

∂2
i f(x) = F ′′(r)

x2
i

r2
+ F ′(r)

(
1

r
− x2

i

r3

)
.

Thus

∆f(x) = F ′′(r) +
n− 1

r
F ′(r),
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and we have ∆f = 0 if and only if the equation

F ′′(r) +
n− 1

r
F ′(r) = 0

is satisfied. We can easily verify that for n > 2 the function F given by F (r) := r2−n

is a solution for this equation. Thus the function N : Rn \ {0} → R, n > 2, given by

N(x) :=
1

‖x‖n−2
2

is a solution of the Laplace equation ∆f = 0. The function N coincides, modulo a
constant, with the so-called Newton potential on Rn \ {0}.
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4 Taylor’s Theorem

Let us recall Taylor’s theorem in the 1-dimensional situation:

Taylor’s theorem in one variable. If f ∈ Cm+1(J,R), J ⊂ R being an interval,
and if 0, x ∈ J , then

f(x) = f(0) +
f ′(0)

1!
x+

f ′′(0)

2!
x2 + · · ·+ f (m)(0)

m!
xm +Rm+1f(x, 0) (∗)

where Rm+1f(x, 0) denotes the remainder term of the Taylor approximation. Its La-
grange form reads as follows

Rm+1f(x, 0) =
fm+1(ξ)

(m+ 1)!
xm+1 for some ξ ∈ (0, x) (if x > 0).

The aim of this formula is to approximate “nicely” a given smooth function by a
polynomial in a neighborhood of x = 0. In the following we consider the analogous
problem for functions of several variables, more precisely for f ∈ Cm+1(U,R), where
U ⊂ Rn denotes an open set. Thus we look for a polynomial p in n variables, which
“nicely” approximates f in a neighborhood of x = 0.

4.1 Theorem (Taylor’s theorem in n variables). Let U ⊂ Rn be an open set,
a, x ∈ U , with ax ⊂ U , and let f ∈ Cm+1(U,R). Then there exists some ξ ∈ ax such
that

f(x) =
m∑
j=0

(∇(x− a))j f(a)

j!
+

(∇(x− a))m+1 f(ξ)

(m+ 1)!

=
∑
|α|≤m

Dαf(a)

α!
(x− a)α +

∑
|α|=m+1

Dαf(ξ)

α!
(x− a)α

=: Tmf(x, a) +Rm+1f(x, a).

Proof. We divide the proof into two steps.

Step 1: calculate the directional derivatives of f at a.
Set h := (h1, . . . , hn) := (x− a) ∈ Rn. Then the function

F : [0, 1]→ R, F (t) := f(a+ th)

is (m+ 1)-times continuously differentiable, since by the chain rule we obtain

F ′(t) =
d

dt
f(a+ th) =

n∑
i=1

∂if(a+ th)hi = (∇h)f(a+ th).

The same argument applied upon g := (∇h)f yields

F ′′(t) =
d

dt
g(a+ th) = (∇h)2f(a+ th).
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By induction we see F ∈ Cm+1[0, 1] with

F (`)(t) = (∇h)`f(a+ th), t ∈ [0, 1], ` ∈ {0, 1, . . . ,m+ 1}. (∗∗)

Step 2: Apply the 1-dim. version of Taylor’s formula (∗).
Observe that f(x) = F (1) and f(a) = F (0); then it follows by (∗) and (∗∗) that

f(x) = F (1) =
m∑
l=0

F (`)(0)

`!
+
F (m+1)(τ)

(m+ 1)!
some τ ∈ [0, 1]

=
m∑
l=0

(∇h)`f(a)

`!
+

(∇h)m+1f(a+ τh)

(m+ 1)!

=
m∑
`=0

∑
|α|=`

hαDαf(a)

α!
+

∑
|α|=m+1

hαDαf(a+ τh)

α!

=
∑
|α|≤m

Dαf(a)

α!
(x− a)α +

∑
|α|=m+1

Dαf(ξ)

α!
(x− a)α

for a suitable τ ∈ [0, 1] and hence ξ := a+ τh ∈ ax.
�

4.2 Remarks. a) Analogously to the case of one variable one calls

Tmf(x, a) =
∑
|α|≤m

Dαf(a)

α!
(x− a)α

the Taylor polynomial of degree m of f around a. Further

Rm+1f(x, a) =
∑

|α|=m+1

Dαf(ξ)

α!
(x− a)α

is called remainder term, here in Lagrange’s form.

b) For m = 0 Taylor’s theorem is identical to the mean value theorem.

c) Let us explicitly specify the Taylor polynomial for m = 2 in the case of n real
variables:

T2f(x, a) = f(a) + (∇(x− a))f(a) + 1
2!
(∇(x− a))2f(a)

= f(a) +
n∑
i=1

∂if(a)(xi − ai) +
1

2

n∑
i=1

∂2
i f(a)(xi − ai)2

+
n∑

i,j=1
i6=j

∂ijf(a)(xi − ai)(xj − aj).
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d) In the special case n = 2, m = 3 we have for f ∈ C 3

T3f
(
(x, y), a1, a2)

)
= f(a1, a2) + fx(a1, a2)(x− a1) + fy(a1, a2)(y − a2)

+
1

2
fxx(a1, a2)(x− a1)

2 + fxy(a1, a2)(x− a1)(y − a2) +
1

2
fyy(a1, a2)(y − a2)

2

+
1

6
fxxx(a1, a2)(x− a1)

3 +
1

6
fyyy(a1, a2)(y − a2)

3

+
1

2
fxxy(a1, a2)(x− a1)

2(y − a2) +
1

2
fxyy(a1, a2)(x− a1)(y − a2)

2

e) If U ⊂ Rn is (as usual) open, f ∈ Cm(U,R) and a ∈ U , then

lim
x→a

f(x)− Tmf(x, a)

‖x− a‖m
= 0.

To see this, first choose δ > 0 so small that Uδ(a) ⊂ U . By Taylor’s theorem
there exists to each x ∈ Uδ(a) a τ ∈ [0, 1] such that

f(x)− Tmf(x, a) = Tm−1f(x, a) +
∑
|α|=m

Dαf(a+ τ(x− a))
α!

(x− a)α − Tmf(x, a)

=
∑
|α|=m

(x− a)α

α!

(
Dαf(a+ τ(x− a)

)
−Dαf(a)

)
.

Since |(x−a)α|
‖x−a‖m ≤ 1 for all α ∈ Nn

0 with |α| = m and since Dαf is continuous for
all such α we finally get

0 ≤ |f(x)− Tm(f(x, a)|
‖x− a‖m

≤
∑
|α|≤m

1

α!
|Dαf(a+ τ(x− a))−Dαf(a)| x→a−→ 0

4.3 Example. Let f : R2 → R, f(x, y) := sin
(
x+2y

2

)
+ cos

(
2x−y

2

)
and a = (0, 0).

According to Remark 4.2 c), we have

T2f
(
(x, y), (0, 0)

)
= f(0, 0) + fx(0, 0)x+ fy(0, 0)y +

fxx(0, 0)

2!
x2

+ fxy(0, 0)xy +
fyy(0, 0)

2!
y2

= 1 +
x

2
+ y − x2

2
+

1

2
xy − y2

8

after the calculation of the required partial derivatives at (0, 0).

Starting with the mean value theorem 2.11 in integral form, i.e.,

f(a+ h) = f(a) +

∫ 1

0

Df(x+ th)h dt,

we now want to represent the remainder term in integral form.
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4.4 Corollary (Taylor’s theorem with remainder in integral form). Let U ⊂ Rn

be an open set, a, x ∈ U with ax ⊂ U and f ∈ Cm+1(U,R). Then

f(x) =
∑
|α|≤m

Dαf(a)

α!
(x− a)α +

∫ 1

0

(1− t)m

m!

(
(∇(x− a))m+1f

)
(a+ t(x− a)

)
dt.

Proof. (by induction): For m = 0 the assertion coincides with the above mean value
theorem in integral form. If m = 1 define two functions

u : [0, 1]→ R, u(t) := Df(a+ th) · h = (∇h)f(a+ th)

v : [0, 1]→ R, v(t) := t− 1

By the product rule (u(t)v(t))′ = u′(t)(t − 1) + u(t) we obtain for the integral in the
mean value theorem (note u′(t) = (∇h)2f(a+ th))∫ 1

0

(∇h)f(a+ th) dt =

∫ 1

0

u(t) dt =

∫ 1

0

d

dt
(u(t)v(t) dt−

∫ 1

0

u′(t)(t− 1) dt

= u(1)v(1)− u(0)v(0) +

∫ 1

0

(1− t)((∇h)2f)(a+ th) dt

= (∇h)f(a) +

∫ 1

0

(1− t)((∇h)2f)(a+ th) dt.

The general induction step follows the same pattern and is left as an exercise.

4.5 Remark. In this connection let us discuss the idea of the tangent plane. If U ⊂ Rn

is open and f ∈ C1(U,R), we say that a surface F in the (n+ 1)-dimensional space is
given by the equation z = f(x), x ∈ U . It is described by the graph of f ,

graph f = {(x, z) ∈ Rn+1 : z = f(x), x ∈ U}.

We have seen that the Taylor polynomial T1f(x, a) is an affine function, which approx-
imates f near a ∈ U . The hyperplane

z = T1f(x, a) = f(a) +Df(a)(x− a)

is called tangent plane to the surface z = f(x) at the point (a, f(a)). The vector

v = (∇f(a),−1)

is called normal vector of the tangent plane at the point (a, f(a)).
In the case n = 1 one speaks of a curve instead of a surface and of a tangent

instead of a tangent plane. In this case we have as equation of the tangent to the curve
z = f(x)

tz(x) = f(a) + f ′(a)(x− a)
which we already met in Chapter IV. In the case n = 2 the equation of the tangent
plane at the point (a1, a2) reads

tz(x, y) = f(a1, a2) + fx(a1, a2)(x− a1) + fy(a1, a2)(y − a2).
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5 Local extreme points

In this paragraph we discuss sufficient criteria for local maxima and minima of real
valued functions of several real variables. We start with the definition of local extrema.

5.1 Definition. Let U ⊂ Rn be open, f : U → R be a function. A point a ∈ U is
called a local maximum (minimum) if there exists a neighborhood Ũ ⊂ U of a such
that

f(x) ≤ f(a) ∀ x ∈ Ũ (f(x) ≥ f(a) ∀x ∈ Ũ for minima).

If f(x) = f(a) only for x = a, then f is said to have an isolated maximum (minimum)
at a.

A local extremum is a local maximum or minimum.

5.2 Theorem. Let U ⊂ Rn be open, f : U → R be partially differentiable at a ∈ U . If
f exhibits a local extremum at a, then

grad f(a) = 0.

Proof. Choose δ > 0 so small that the functions gi, defined by

gi : (−δ, δ)→ R, gi(t) := f(a+ tei), i ∈ {1, . . . , n},

are well defined and differentiable at t = 0. Since each gi exhibits a local extremum at
t = 0, Theorem IV.3.8 (Analysis I) yields

0 = g′i(0) = ∂if(a), i ∈ {1, . . . , n}.

�

If f : U → R is differentiable at a ∈ U and if grad f(a) = 0, then a is called a
critical point of f .

5.3 Examples. a) Consider f : R2 → R, f(x, y) := x2 + y2. Then grad f(x) =

(2x, 2y)
!
= (0, 0) if and only if x = 0 and y = 0. Further f(x, y) > 0 for all

(x, y) 6= (0, 0). Hence f has at (0, 0) an isolated minimum.

b) Consider f : R2 → R, f(x, y) = x2 − y2. Then grad f(x) = (2x,−2y)
!
= (0, 0) if

and only if x = 0 and y = 0. Further f(x, 0) > 0 for all x 6= 0 and f(0, y) < 0 for
all y 6= 0. This implies that f has no local extremum at (0, 0), but a so-called
saddle point.

Let us now pursue the question: How can one distinguish the above sketched cases
systematically? First recall the sufficient criterion for extremal values of functions of
one real variable from Analysis I:

Let f : R→ R be a twice differentiable function and let a be a critical point of f . Then
a is
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• a local minimum of f if f ′′(a) > 0

• a local maximum of f if f ′′(a) < 0.

For functions of n real variables we replace f ′′(a) by the Hessian matrix (∂i∂jf(a))n×n.
We recall its definition: Let U ⊂ Rn be open (as is always assumed), f ∈ C2(U,R).
The Hessian matrix of f at a ∈ U is given by

Hf (a) =


∂1∂1f(a) ∂1∂2f(a) · · · ∂1∂nf(a)
∂2∂1f(a) ∂2∂2f(a) · · · ∂2∂nf(a)

...
...

. . .
...

∂n∂1f(a) ∂n∂2f(a) · · · ∂n∂nf(a)


n×n

.

5.4 Remarks.

a) Hf (a) is a symmetric matrix by the Theorem of Schwarz 3.2.

b) The polynomial formula in Section 3 implies for h = (h1, . . . , hn) ∈ Rn and
f ∈ C2(U,R)

(h1∂1 + · · ·+ hn∂n)
2f(a) = 2

∑
|α|=2

hα

α!
Dαf(a)

=
n∑

i,j=1

DiDjf(a)hihj = 〈h,Hf (a)h〉.

Thus, by Taylor’s theorem and Remark 4.2 c)

f(x) = f(a) + 〈grad f(a), x− a〉+ 1

2
〈(x− a), Hf (a)(x− a)〉+ r(x), x ∈ U,

with

lim
x→a

r(x)

‖x− a‖2
= 0.

For the identification of local extrema we also need the following concept of defi-
niteness of a matrix from linear algebra.

5.5 Definition. A symmetric matrix T ∈Mn(R) is called

a) positive definite if 〈x, Tx〉 > 0 ∀x ∈ Rn \ {0}

b) negative definite if 〈x, Tx〉 < 0 ∀x ∈ Rn \ {0}

c) indefinite if there exist x, y ∈ Rn such that 〈x, Tx〉 > 0 and 〈y, Ty〉 < 0.
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The property of a symmetric matrix to be positive or negative definite can be
characterized by the signs of the eigenvalues of T .

5.6 Theorem. Let T ∈Mn(R) be symmetric. Then

a) the following are equivalent

• T is positive definite

• all eigenvalues of T are positive

• for all k ∈ {1, . . . , n}, det

t11 · · · t1k
...

. . .
...

tk1 · · · tkk


k×k

> 0.

b) the following are equivalent

• T is negative definite

• all eigenvalues of T are negative

• for all k ∈ {1, . . . , n}, (−1)k det

t11 · · · t1k
...

. . .
...

tk1 · · · tkk


k×k

> 0.

c) the following are equivalent

• T is indefinite

• T has positive and negative eigenvalues.

For a proof we refer to Linear Algebra.

5.7 Theorem (Sufficient criterion for local extrema). Let U ⊂ Rn be open,
f ∈ C2(U,R) and a ∈ U a critical point of f . Then we have

a) If Hf (a) is positive definite, then f has an isolated minimum at a.

b) If Hf (a) is negative definite, then f has an isolated maximum at a.

c) If Hf (a) is indefinite, then f has no local extremum at a.

Proof. By Remark 5.4.b) and 4.2.e) we have for x ∈ U , h := (x− a)

f(x) = f(a) +
1

2
〈h,Hf (a)h〉+ r(x), lim

x→a

r(x)

‖h‖2
= 0.

This implies that to each ε > 0 there exists a δ > 0 such that

0 ≤ |r(x)| < ε‖h‖2 for all h ∈ Uδ(0) := {v ∈ Rn : ‖v‖ < δ}.
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Ad a). By hypothesis, Hf (a) is positive definite. Since the continuous function
h 7→ 〈h,Hf (a)h〉 attains its minimum on the compact unit sphere

Sn−1 := {v ∈ Rn : ‖v‖2 = 1},

there exists a v0 ∈ Sn−1 with

〈v,Hf (a)v〉 ≥ 〈v0, Hf (a)v0〉 =: m > 0 ∀ v ∈ Sn−1.

If one sets v := h
‖h‖ for h ∈ Rn \ {0}, one obtains

〈h,Hf (a)h〉 ≥ m‖h‖2 ∀h ∈ Rn.

Now choose δ > 0 so small that

m

4
‖h‖2 > |r(x)| ≥ 0 ∀h = (x− a) ∈ Uδ(0), x, a ∈ U.

Therefore, by the above Taylor formula,

f(x) = f(a) +
1

2
〈h,Hf (a)h〉+ r(x) > f(a) +

m

2
‖h‖2 − m

4
‖h‖2

> f(a), h ∈ Uδ(0).

Thus f possesses an isolated minimum at a.

Ad b). Apply a) upon −f to get the assertion.

Ad c). By hypothesis we know: There exist v, w ∈ Rn such that

〈v,Hf (a)v〉 > 0 and 〈w,Hf (a)w〉 < 0.

Now choose δ > 0 such that a+ tv ∈ U and a+ tw ∈ U ∀ t ∈ (−δ, δ) and set

Fv : (−δ, δ)→ R, Fv(t) := f(a+ tv),

Fw : (−δ, δ)→ R, Fw(t) := f(a+ tw).

The functions Fv and Fw are twice continuously differentiable and by the chain rule,
by a being a critical point,

F ′
v(0) = (∇v)f(a) = 0, F ′

w(0) = (∇w)f(a) = 0.

Further

F ′′
v (0) = (∇v)2f(a) = 〈v,Hf (a)v〉 > 0, F ′′

w(0) = (∇w)2f(a) = 〈w,Hf (a)w〉 < 0.

Thus, Fv has a local minimum at t = 0, Fw a local maximum at t = 0. Therefore, f
cannot have a local extremum at a.

�
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5.8 Examples. First consider the examples from 5.3.

a) For f(x, y) = x2+y2 we have Hf (0, 0) =
(

2 0
0 2

)
, which implies that the eigenvalues

are positive, i.e., Hf (0, 0) is positive definite and f has a local minimum at (0, 0).

b) For f(x, y) = x2 − y2 we have Hf (0, 0) =
(

2 0
0 −2

)
, the eigenvalues have different

signs, Hf (0, 0) is indefinite, f has no local extremum at (0, 0).

c) f : R2 → R, f(x, y) := x3 + y3 − 3xy. Then grad f(x) = (3x2 − 3y, 3y2 − 3x),

and the necessary condition grad f(x)
!
= 0 leads to the critical points (0, 0) and

(1, 1) of f . The Hessian reads

Hf (x, y) =

(
6x −3
−3 6y

)
so that we have to test Hf (0, 0) and Hf (1, 1) for definiteness.
The two eigenvalues of Hf (0, 0) =

(
0 −3
−3 0

)
are ±3. Therefore, Hf (0, 0) is indefi-

nite which implies that f has no local extremum at (0, 0).
For (1, 1), we have Hf (1, 1) =

(
6 −3
−3 6

)
, thus detHf (1, 1) = 36 − 9 > 0 and

det(6)1×1 > 0, which entails that Hf (1, 1) is positive definite. Hence f attains an
isolated minimum at (1, 1).
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6 Differentiation of integrals with parameters

In physics, variational principles are frequently used, for example to determine the
path of a moving system as the extremum of a certain variational problem. For a
rigorous treatment of such variational problems we need differentiability properties of
integrals with parameters. We consider in this section only integrals with a compact
domain of integration; the general case of non-compact domains of integration will be
first considered in the context of Lebesgue integration.

Let U ⊂ Rn be open and J ⊂ R be a compact interval. We consider a function
f : U × J → R with the property that for every x ∈ U the mapping t 7→ f(x, t) is
continuous. Let us define

F : U → R, F (x) :=

∫
J

f(x, t) dt.

The following theorem holds.

6.1 Theorem (Differentiation of integrals with parameters).

a) If f is continuous on U × J , then F is continuous on U .

b) If, moreover, f is continuously partially differentiable with respect to xi, then F
is also continuously partially differentiable with respect to xi and one can “differ-
entiate under the integral sign”, that is

∂F

∂xi
(x) =

∫
J

∂f

∂xi
(x, t) dt.

Proof. Let us remark first that it suffices to consider the case U ⊂ R.

Ad a). Let x ∈ U and (xk) ⊂ U be a sequence with limk→∞ xk = x and xk 6= x for
all k ∈ N. Then f is uniformly continuous on the compact set J × {x, x1, x2, x3, . . . },
so for every ε > 0 there exists δ > 0 such that for all k ∈ N,

|xk − x| < δ implies |f(xk, t)− f(x, t)| < ε for all t ∈ J.

Hence, (f(xk, ·))k converges uniformly to f(x, ·). By Theorem V.2.13, we get that

lim
k→∞

∫
J

f(xk, t) dt =

∫
J

f(x, t) dt.

Thus, F is continuous at x and, since x ∈ U was taken arbitrary, it follows that f is
continuous on U .

Ad b). As in a), let x ∈ U and (xk) be a sequence in U such that limk→∞ xk = x
and xk 6= x for all k ∈ N. Moreover, let K ⊂ U be a compact interval with x ∈ K,
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namely K = [c, d], c 6= d. The function ∂f
∂xi

is continuous on the compact set K × J ,
hence for every ε > 0 there exists δ > 0 such that for all x̃ ∈ K,

|x− x̃| < δ implies

∣∣∣∣ ∂f∂xi (x̃, t)− ∂f

∂xi
(x, t)

∣∣∣∣ < ε for all t ∈ J.

Applying the classical Mean Value Theorem IV.2.4, we obtain the existence of ξk
between x and xk satisfying for all t ∈ J

f(xk, t)− f(x, t)

xk − x
=
∂f

∂x
(ξk, t).

Since limk→∞ xk = x, there exists N ∈ N such that for all k ≥ N , |xk − x| < δ and
xk ∈ U . It follows that |ξk − x| < δ for all k ≥ N , hence∣∣∣∣∂f∂x (x, t)− f(xk, t)− f(x, t)

xk − x

∣∣∣∣ =

∣∣∣∣∂f∂x (x, t)− ∂f

∂x
(ξk, t)

∣∣∣∣ < ε

for all k ≥ N and t ∈ J .

Thus,
(
f(xk,·)−f(x,·)

xk−x

)
converges uniformly on J to ∂f

∂x
(x, ·). Applying again Theo-

rem V.2.13, we obtain that

lim
k→∞

F (xk)− F (x)

xk − x
= lim

k→∞

∫
J

f(xk, t)− f(x, t)

xk − x
dt =

∫
J

∂f

∂x
(x, t) dt.

It follows that F is partially differentiable with respect to x and

F ′(x) =

∫
J

∂f

∂x
(x, t) dt.

Since ∂f
∂x

is continuous on U × J by hypotheses, we can apply a) to conclude that F ′ is
continuous.

�

As a first application of the above theorem we prove the permutability of the order
of integration for iterated integrals.

6.2 Theorem. Let f : [a, b]× [c, d]→ R be continuous. Then∫ b

a

(∫ d

c

f(x, t) dt

)
dx =

∫ d

c

(∫ b

a

f(x, t) dx

)
dt.

Proof. Let us define the functions F1, F2 : [a, b]→ R by

F1(ξ) :=

∫ ξ

a

(∫ d

c

f(x, t) dt

)
dx, F2(ξ) :=

∫ d

c

(∫ ξ

a

f(x, t) dx

)
dt.
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Since the integrand of F1 is continuous on [a, b], we can apply the Fundamental Theorem
of Differential and Integral Calculus to conclude that F1 is differentiable and F ′

1(ξ) =∫ d
c
f(ξ, t) dt. By the above Theorem 6.1, F2 is differentiable with F ′

2(ξ) =
∫ d
c
f(ξ, t) dt.

It follows that F ′
1 = F ′

2 and thus, since F1(a) = F2(a) = 0, that F1 = F2. In particular,
F1(b) = F2(b), hence the conclusion.

�

By a repeated application of the above procedure, one can define the iterated inte-
gral of a continuous function on a rectangle Q := [a1, b1]× · · · × [ak, bk] ⊂ Rk as∫

Q

f(x) :=

∫ bk

ak

(
. . .

∫ b2

a2

[∫ b1

a1

f(x1, . . . , xk) dx1

]
dx2 . . .

)
dxk.

In the following, we consider the so-called Euler differential equation of the varia-
tional calculus. Let us study the following problem: Determine the surface of revolution
between to coaxial circular lines with minimal surface area. More exactly, we try to
find, given two points (a, α) and (b, β) with a < b, a continuously differentiable function
f : [a, b]→ R+ with f(a) = α and f(b) = β such that the surface obtained by rotating
its graph around the x-axis has minimal surface area. The surface area is given by

F (f) = 2π

∫ b

a

f(x)
√

1 + f ′(x)2 dx,

as we shall prove later.
Based on this example, we consider more generally a twice continuously differen-

tiable function

L : [a, b]× R× R→ R, (t, y, p) 7→ L(t, y, p).

For α, β ∈ R let

V := {ϕ ∈ C2([a, b],R) : ϕ(a) = α, ϕ(b) = β}

and define

J : V → R, J(ϕ) :=

∫ b

a

L(t, ϕ(t), ϕ′(t)) dt.

We are looking for ϕ ∈ V at which an extremum of J is attained. In the above example,
L(t, y, p) = y

√
1 + p2. The extremal problem formulated here is of a special kind, since

the domain of J is (a subset of) the infinite-dimensional vector space V .
The following theorem gives a necessary condition for the existence of an extremum

of J .

6.3 Theorem (Euler differential equation). If ϕ ∈ V is such that J(ϕ) = infψ∈V J(ψ),
then the Euler differential equation

d

dt

∂L

∂p
(t, ϕ(t), ϕ′(t)) =

∂L

∂y
(t, ϕ(t), ϕ′(t))

holds.
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Proof. Let ϕ ∈ V be such that J(ϕ) = infψ∈V J(ψ) and g ∈ C2([a, b],R) be a function
with g(a) = g(b) = 0. Then ϕ + εg ∈ V for all ε ∈ R, hence J(ϕ) ≤ J(ϕ + εg) for all
ε ∈ R. Let us define

F : R→ R, F (ε) := J(ϕ+ εg).

Since F has a minimum at ε = 0, we must have dF
dε

(0) = 0. Applying Theorem 6.1 we
differentiate under the integral sign and obtain

dF

dε
(ε) =

∫ b

a

d

dε
L(t, (ϕ+ εg)(t), (ϕ′ + εg′)(t)) dt

=

∫ b

a

∂L

∂y
(t, (ϕ+ εg)(t), (ϕ′ + εg′)(t)) · g(t) dt

+

∫ b

a

∂L

∂p
(t, (ϕ+ εg)(t), (ϕ′ + εg′)(t)) · g′(t) dt.

Applying integration by parts to the second integral, we get that∫ b

a

∂L

∂p
· g′ =

(∂L
∂p
· g
)∣∣∣b
a
−
∫ b

a

g(t) · d
dt

∂L

∂p
(t, (ϕ+ εg)(t), (ϕ′ + εg′)(t)) dt.

Hence,

0 =
dF

dε
(0) =

∫ b

a

[
∂L

∂y
(t, ϕ(t), ϕ′(t))− d

dt

∂L

∂p
(t, ϕ(t), ϕ′(t))

]
· g(t) dt

for any function g ∈ C2([a, b],R) with g(a) = g(b) = 0. The conclusion follows by an
application of the following lemma.

�

6.4 Lemma. If f : [a, b]→ R is a continuous function such that∫ b

a

f(t)g(t) dt = 0

for any function g ∈ C2([a, b],R) with g(a) = g(b) = 0, then f ≡ 0 on [a, b].

Proof. Since f is continuous, it suffices to show that f ≡ 0 on (a, b). Assume that
f(x) 6= 0 for some x ∈ (a, b). Without loss of generality, let f(x) = ε > 0. The
continuity of f implies the existence of a neighborhood Uδ(x) of x such that f(t) ≥ ε

2

for all t ∈ Uδ(x). Let us choose now g ∈ C2([a, b],R) satisfying g ≥ 0, g(x) > 0 and
g(t) = 0 for all t ∈ [a, b] \ Uδ(x). It follows that

0 =

∫ b

a

f(t) · g(t) dt =

∫ x+δ

x−δ
f(t)g(t) dt ≥ ε

2

∫ x+δ

x−δ
g(t) dt︸ ︷︷ ︸
>0

> 0,

and we obtain a contradiction.
�
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6.5 Example. As above, let V = {ϕ ∈ C2([a, b],R) : ϕ(a) = α, ϕ(b) = β}. Motivated
by the arclength of curves, let us consider

J(ϕ) =

∫ b

a

√
1 + ϕ′(t)2 dt.

Then L(t, y, p) =
√

1 + p2, so ∂L
∂y

= 0, ∂L
∂p

(t, y, p) = p√
1+p2

, and the Euler differential

equation becomes
d

dt

ϕ′(t)√
1 + ϕ′(t)2

=
∂L

∂y
= 0.

We get that

ϕ′′(t)√
1 + ϕ′(t)2

− ϕ′(t) ϕ′(t) · ϕ′′(t)√
(1 + ϕ′(t)2)3

= 0 ⇒ ϕ′′(t)
1

(1 + ϕ′(t)2)3/2
= 0

for all t ∈ [a, b], hence ϕ′′(t) = 0 for all t ∈ [a, b]. It follows that

ϕ(t) = mt+m

where m,n are determined from ϕ(a) = α and ϕ(b) = β:

m =
β − α
b− a

, n =
αb− βa
b− a

.

Hence, we have proved that the shortest distance between two points is the straight
line.

In the following, we generalize the above strategy to the situation with n functions.
The mapping L has now the form

L : [a, b]× Rn × Rn → R, (t, y1, . . . , yn, p1, . . . , pn) 7→ L(t, y1, . . . , yn, p1, . . . , pn)

and for α, β ∈ Rn,

V = {f ∈ C2([a, b],Rn) : f(a) = α, f(b) = β}.

One defines J : V → R via

J(ϕ) =

∫ b

a

L(t, ϕ1(t), . . . , ϕn(t), ϕ
′
1(t), . . . , ϕ

′
n(t)) dt.

If J attains a minimum at ϕ = (ϕ1, . . . , ϕn) ∈ V , then

d

dt
Lpi

(t, ϕ, ϕ′)− Lyi
(t, ϕ, ϕ′) = 0, i = 1, . . . , n

holds.
Let us consider a physical system described by the time coordinate t and the spatial

coordinates ϕ(t) = (ϕ1(t), . . . , ϕn(t)). Then
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a) L(t, ϕ, ϕ′) is called the Lagrangian or the Lagrange function;

b) L = T − U , where T = T (ϕ, ϕ′) is the kinetic energy and U = U(ϕ) is the
potential energy of the system;

c) moreover; J(ϕ) =
∫ b
a
L(t, ϕ(t), ϕ′(t)) dt is called in physics the action integral.

Hamilton’s principle in mechanics states that the motion of the system from time
t0 to time t1 is such that the integral

J(ϕ) =

∫ t1

t0

(
T (ϕ, ϕ′)− U(ϕ)

)
dt

has a minimum for the actual path ϕ(t) of the motion. The Euler differential equation
implies that

d

dt

∂T

∂ϕ′i
− ∂

∂ϕi
(T − U) = 0, i = 1, . . . , n.

In mechanics, these equations are called the Lagrange motion equations. Let us consider
the special case of the motion of a mass point with a time-independent potential U .
We get for x = (x1, x2, x3) and v = (x′1, x

′
2, x

′
3) that

T =
m

2

3∑
i=1

v2
i =

m

2
·

3∑
i=1

(x′i)
2(t) and

L(x, v) =
m

2
(v2

1 + v2
2 + v2

3)− U(x1, x2, x3).

Since the Lagrange function does not depend explicitly on t,

∂L

∂xi
= −∂U

∂xi
and

∂L

∂vi
= mvi

hold and the Euler differential equation becomes

d

dt
(mx′i(t)) +

∂U

∂xi
(x(t)) = 0.

Hence, the motion equation in this case is

mx′′i = −∂U
∂xi

(x), i = 1, 2, 3.

6.6 Example. We consider again the example with the surface of revolution from the
beginning and define J by

J(ϕ) =

∫ b

a

ϕ(t)
√

1 + ϕ′(t)2 dt. (6.1)
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The Euler differential equation is

Lppϕ
′′ + Lpyϕ

′ + Lpt − Ly = 0.

Since L is independent from t, we get for Eϕ := Lp(ϕ, ϕ
′)ϕ′ − L(ϕ, ϕ′) that

d

dt
Eϕ = (Lpyϕ

′2 + Lppϕ
′ϕ′′ + Lpϕ

′′)− Lyϕ′ − Lpϕ′′

= ϕ′(Lpyϕ
′ + Lppϕ

′′ − Ly) = 0,

so every solution ϕ of the Euler differential equation satisfies in this case

Eϕ = Lp(ϕ, ϕ
′) · ϕ′ − L(ϕ, ϕ′) = constant.

In physics, Eϕ is interpreted as the energy of the system. Let us now consider the
special J defined by (6.1). It follows that

L(t, y, p) = y
√

1 + p2,
∂L

∂p
(t, y, p) =

yp√
1 + p2

, and
∂L

∂y
(t, y, p) =

√
1 + p2.

The Euler equation becomes

d

dt

(
ϕϕ′√
1 + ϕ′2

)
=
√

1 + ϕ′2 (6.2)

and, since L is independent of t, there exists c ∈ R such that Lp(ϕ, ϕ
′)·ϕ′−L(ϕ, ϕ′) = −c

holds. It follows that

ϕ · ϕ′2√
1 + ϕ′2

− ϕ ·
√

1 + ϕ′2 = −c or
ϕ√

1 + ϕ′2
= c.

Using this relation in (6.2) yields

d

dt
(cϕ′) =

ϕ

c
or ϕ′′ − 1

c2
ϕ = 0.

Now a solution of (6.2) is the function

ϕ(t) = c · cosh

(
1

c
(t− t0)

)
.

These functions are called catenaries and the surface of revolution which they generate
is called a catenoid of revolution.

Finally, we determine the constants c and t0 for the case α = β and a = −b. Due
to symmetry reasons, t0 = 0, so we have the equation

cosh b/c

b/c
=
α

b
.

There exists c ∈ R such that for α/b = c the above equation has exactly one solution.
As a conclusion, we have proved that the problem of minimal surface of revolution

possesses at most one solution for this c and α/b = c.
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Chapter VIII

Inverse mappings and implicit
functions

In this chapter we shall study the following subjects:

• the question when a continuously differentiable function has a continuously dif-
ferentiable inverse;

• the solving of equations in Rn and, connected with it, the Implicit Function
Theorem;

• submanifolds in Rn and, connected with it, local extrema with constraints

Answering the first question turns out to be much more complicated than in the one-
dimensional case, since the Mean Value Theorem from Analysis I has no n-dimensional
analogue. Our main ingredient to obtain the theorem on the local invertibility of a
continuously differentiable mapping is the Banach Fixed Point Theorem, which is used
to prove that, under certain hypotheses, a continuous inverse exists locally. Then the
Chain Rule implies that this inverse is again continuously differentiable.

The Implicit Function Theorem is concerned with the question under which condi-
tions an equation f(x, y) = 0 has a differentiable solution y = g(x) in the neighborhood
of a zero of f. This theorem leads to the concept of submanifolds of Rn; these are those
subsets of Rn which locally look like an open subset of Rd. The geometrically moti-
vated introduction of the concepts of tangent space and normal space in a submanifold
allows an elegant proof of the theorem on Lagrange multipliers, a necessary condition
for the existence of local extrema with constraints.

1 Inverse Mapping Theorem

We begin this section with the definition of the notion of a diffeomorphism.

193
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1.1 Definition. (diffeomorphism ). A bijective and continuously differentiable func-
tion f : U → V between two open sets U ⊆ Rn and V ⊆ Rn is called a diffeomorphism
if the inverse mapping f−1 : V → U is also continuously differentiable.

1.2 Remark. a) If I ⊆ R is an open interval and f : I → J a continuously differ-
entiable function with f ′(x) 6= 0 for all x ∈ I, then f is strictly monotone, the
inverse function exists on the interval J = f(I) and it is also differentiable, by
the Inverse Mapping Theorem IV.1.8 from Analysis I.

b) A result similar to (a) does not hold for functions in Rn with n ≥ 2. As a
counterexample, we consider the mapping defining polar coordinates:

f : (0,∞)× R→ R2 \ {(0, 0)}, f(r, ϕ) := (r cosϕ, r sinϕ).

This is surjective and continuously differentiable, Jf (r, ϕ) is invertible for all
(r, ϕ) ∈ (0,∞)× R, but f is not injective. Hence, f is not invertible.

c) Let U ⊂ Rn, V ⊂ Rm be open and f : U → V be a diffeomorphism with the
inverse g := f−1 : V → U . By the Chain Rule we get

g′(f(x))f ′(x) = (g ◦ f)′(x) = (idU)′(x) = idRn , x ∈ U

f ′(g(y))g′(y) = (f ◦ g)′(y) = (idV )′(y) = idRm , y ∈ V

Using Linear Algebra, we get that n = m and that for y = f(x) the mappings
g′(y)−1 ∈ L(Rn) and f ′(x)−1 ∈ L(Rn) are isomorphisms inverse to each other

d) The assertion (c) implies that Df(x) is invertible for all x ∈ U if f : U → V is
a diffeomorphism. As we have seen in (b), the converse is not true in general.

1.3 Theorem. (Inverse Mapping Theorem) Let U ⊂ Rn be an open set and f : U →
Rn be a continuously differentiable function. Assume that Df(a) ∈ L(Rn) is invertible
for some a ∈ U . Then there exists an open neighborhood V of b = f(a) and an
open neighborhood Ũ ⊂ U of a such that the restriction f̃ : Ũ → V of f to Ũ is a
diffeomorphism. Moreover

D(f̃)−1(b) = (Df(a))−1.

For the proof of the above theorem, we need some auxiliary results.

1.4 Lemma. Let U ⊆ Rn be open, f : U → Rm be a differentiable function and
a, x ∈ U with ax ⊂ U . Assume that

sup
t∈[0,1]

‖Df(a+ t(x− a)‖ := L <∞.

Then ‖f(x)− f(a)‖ ≤ L‖x− a‖.
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For the proof we refer to the exercises.

1.5 Lemma. (Continuity of the inversion)
The set GLn(R) = {A ∈Mn(R) : A invertible} is open in Rn2

and the mapping

Inv : GLn(R)→Mn(R), A 7−→ A−1,

is continuous.

Proof. Since GLn(R) = det−1({x ∈ R : x 6= 0}), the set GLn(R) is the inverse image
of the open set {x ∈ R : x 6= 0} under the continuous function det : Mn(R)→ R. For
the continuity of Inv we refer to the exercises. �

Proof of Theorem 1.3. We shall prove the theorem in a number of steps and
begin with the following remark.

By considering instead of f the function Df(a)−1 ◦ f : U → R, it follows that
without loss of generality we can assume that

Df(a) = IdRn . (1.1)

Moreover, we can assume also w.l.o.g. that

a = 0 and f(a) = 0,

(consider the function x 7→ f(x+ a)− f(a) for x ∈ {z ∈ Rn : z + a ∈ U}).

Step 1:
Our target is to solve the equation y = f(x) for “small” y ∈ Rn with respect to x.
For y ∈ Rn we define

ϕy : U → Rn, ϕy(x) := y + x− f(x).

Then y = f(x) holds if and only if ϕy(x) = x, i.e. if and only if x is a fixed point
of the mapping ϕy.

Step 2:
We shall apply Banach’s Fixed Point Theorem to the above equation.
First, let us remark that ϕ0 : U → Rn is continuously differentiable and that the

scaling 1.1 implies that

Dϕ0(0) = IdRn − IdRn = 0.

The continuity of Dϕ0 implies the existence of some r > 0 such that
U2r(0) = {z ∈ Rn : |z| ≤ 2r} ⊂ U and

‖Dϕ0(x)−Dϕ0(0)‖ = ‖Dϕ0(x)‖ ≤
1

2
, x ∈ U2r(0). (1.2)
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Since Dϕy = Dϕ0, by applying Lemma 1.4, we get that

‖ϕy(x1)− ϕy(x0)‖ ≤
1

2
‖x1 − x0‖, x0, x1 ∈ U2r(0), (1.3)

hence

‖ϕy(x)‖ ≤ ‖ϕy(x)− ϕy(0)‖+ ‖ϕy(0)︸ ︷︷ ︸
=y

‖ ≤ 1

2
‖x‖+ ‖y‖ < 2r (1.4)

in the case ‖x‖ ≤ 2r and ‖y‖ < r, i.e., if ‖y‖ < r then ϕy maps U2r(0) into itself.
Furthermore, by (1.3), for each y ∈ Ur(0) the mapping ϕy is a contraction on the
complete metric space U2r(0) (as a closed subset of Rn). Therefore, we may apply
Banach’s Fixed Point Theorem to conclude that for all y ∈ Ur(0) there exists a unique
fixed point x ∈ U2r(0) of ϕy, which satisfies ‖x‖ < 2r by (1.4).

Let
V := Ur(0) and Ũ := f−1(V ) ∩ U2r(0).

Then the restriction f̃ of f to Ũ is bijective.

Step 3:
Let us now prove that g := (f̃)−1 : V → Ũ , g(y) = x, is continuous. For all x ∈ Ũ

we have that x = ϕ0(x) + f(x). Using this and (1.3) we obtain for all y0, y1 ∈ V

‖g(y1)− g(y0)‖ = ‖x1 − x0‖ ≤ ‖ϕ0(g(y1))− ϕ0(g(y0))‖+ ‖f(g(y1))− f(g(y0))‖

≤ 1
2
‖g(y1)− g(y0)‖+ ‖f(g(y1))− f(g(y0))‖,

hence
‖g(y1)− g(y0)‖ ≤ 2‖f(g(y1))− f(g(y0))‖ = 2‖y1 − y0‖. (1.5)

Therefore, g is Lipschitz continuous.

Step 4:
We shall show that for all x ∈ Ũ , Df(x) ∈ L(Rn) is invertible. First, let us remark

that
f(x) = x− ϕ0(x) and Df(x) = IdRn −Dϕ0(x)

for all x ∈ Ũ . If Df(x)v = 0 for some v ∈ Rn, then v = [Dϕ0(x)]v and (1.2) implies
‖v‖ ≤ ‖Dϕ0(x)‖ · ‖v‖ ≤ 1

2
‖v‖, so v = 0.

It follows that Df(x) is injective and the Dimension formula from Linear Algebra
implies that Df(x) is also surjective. Thus we have proved that Df(x) is invertible.

Step 5:
We prove that g is differentiable. To this end, let y0 ∈ V and k ∈ Rn with y0+k ∈ V .

If we set x0 := g(y0) and h := g(y0 + k)− g(y0), then k = f(x0 + h)− f(x0) and

g(y0 + k)− g(y0)− [Df(x0)]
−1k = h− [Df(x0)]

−1
(
f(x0 + h)− f(x0)

)
.
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Since f is differentiable at x0,

f(x0 + h)− f(x0) = Df(x0)h+ r(x0 + h)

with

lim
h→0

r(x0 + h)

‖h‖
= 0.

It follows that

g(y0 + k)− g(y0) = [Df(x0)]
−1k − [Df(x0]

−1r(x0 + h)

and it remains to prove that

lim
k→0

[Df(x0)]
−1r(x0 + h)

‖k‖
= 0. (1.6)

Using (1.5), we get that

‖h‖ = ‖(x0 + h)− x0‖ = ‖g(y0 + k)− g(y0)‖ ≤ 2‖k‖,

and for k → 0, so also h→ 0, we obtain that

‖r(x0) + h‖
‖k‖

≤ 2

‖h‖
‖r(x0 + h)‖−→

h→0
0,

since f is differentiable. Since [Df(x0)]
−1 ∈ L(Rn), (1.6) follows.

Step 6:
An application of the Chain Rule similar to Remark 1.2 (c) gives us

Dg(y) = [Df(g(y))]−1

and Lemma 1.5 implies that Dg : V → L(Rn) is continuous. Hence f̃ : Ũ → V is a
diffeomorphism and the theorem is completely proved. �

The above theorem has numerous impacts. As immediate consequences we get the
following corollaries.

1.6 Corollary. (Theorem of the open mapping) Let U ⊆ Rn be open and f : U →
Rn be a continuously differentiable function such that Df(x) ∈ L(Rn) is invertible for
all x ∈ U . Then f(U) is open in Rn.

Proof. By the Inverse Mapping Theorem, for every x ∈ U there exists an open
neighborhood Ux ⊆ U of x such that f(Ux) ⊆ Rn is open. Since f(U) = ∪x∈Uf(Ux)
and arbitrary unions of open sets are again open, it follows that f(U) is open. �

Mappings with the property that f(O) is open for all open sets O ⊆ U are called
open mappings .
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1.7 Corollary. In the hypothesis of Corollary 1.6 assume moreover that f is injective.
Then f is a diffeomorphism from U onto the open set f(U) ⊆ Rn.

Proof. The inverse mapping g : f(U) → U is continuous, since for every open set
O ⊆ U , the inverse image g−1(O) = f(O) is open by Corollary 1.6. Applying the
Inverse Mapping Theorem, we get that f is a diffeomorphism. �

1.8 Remark. By applying the Inverse Mapping Theorem to solving nonlinear systems
of equations, we get the following statement:
If detDf(x0) 6= 0 for some x0 ∈ U , then there exist neighborhoods U of x0 and V of
f(x0) such that the system of equations

f1(x1, ..., xn) = y1

...
...

fn(x1, ..., xn) = yn

has a unique solution x1 = x1(y1, ..., yn), ..., xn = xn(y1, ..., yn) in U for every (y1, ..., yn) ∈
V . Moreover the functions x1, ..., xn have the same regularity as f1, ..., fn.

1.9 Example. a) Plane polar coordinates

Every point (x, y) ∈ R2 has a presentation using polar coordinates:

x = r cosϕ, y = r sinϕ with r =
√
x2 + y2.

For the mapping f : (r, ϕ) 7−→ (x, y) we get that

detDf(r, ϕ) =

∣∣∣∣cosϕ −r sinϕ
sinϕ r cosϕ

∣∣∣∣ = r 6= 0 when (x, y) 6= (0, 0)

For every point (x, y) 6= (0, 0) there exist infinitely many inverse images (r, ϕ +
2kπ); however, using the Inverse Mapping Theorem, we get the existence in
a neighborhood of (x0, y0) = (r0 cosϕ0, r0 sinϕ0) 6= (0, 0) of an infinitely often
differentiable inverse function given by

r =
√
x2 + y2 and ϕ = arctan y

x
, x0 6= 0,

where the branch of arctangent which gives the value ϕ0 for (x0, y0) is chosen.
If x0 = 0, then we take ϕ = arccot x

y
.

Thus, the presentation using polar coordinates maps the strip

S = {(r, ϕ) ∈ R2 : r > 0, |ϕ| < π}

diffeomorph to R2
− := R2 \ {(x, y) : x ≤ 0, y = 0}.
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b) The complex logarithm The algebraic form of a complex number z ∈ C is z =
x+iy. If we restrict z to the strip S = R×(−π, π) and consider w = ez, it follows
that |w| = ex and argw = y. Hence, the exponential function maps the strip S
bijective onto C \ {0}. Its inverse function is given by (x, y) 7−→ (log |w|, argw)
with y ∈ (−π, π). The periodicity of the exponential (that is, ez = ez+2πi) implies
that every strip shifted by 2kπi, i.e. every Sk = 2πki+S (k ∈ Z) is mapped in a
bijective way onto C \ {0}. The above formula for the inverse remains true, with
the difference that now (2k − 1)π < y ≤ (2k + 1)π is required.

For any w 6= 0, every complex number z satisfying the equation ez = w is called a
logarithm of w. It follows that in every strip Sk there exists exactly one logarithm
of w. The different logarithms differ by multiples of 2πi and are given by

logw = log |w|+ i argw.

If argw ∈ (−π, π), then we call that the principal branch of the logarithm .

In order to apply the Inverse Mapping Theorem to w = ez, let us consider the
function f = (f1, f2) given by

f1(x, y) = ex cos y, f2(x, y) = ex sin y.

Then

detDf(x, y) =

∣∣∣∣ex cos y −ex sin y
ex sin y ex cos y

∣∣∣∣ = e2x 6= 0.

If we restrict (x, y) to the strip S = R× (−π, π), then f = (f1, f2) is a diffeomor-
phism with range R2

−. The inverse mapping is then the principal branch of the
logarithm, given by

x = 1
2
log(f 2

1 + f 2
2 ), y = arg(f1, f2) ∈ (−π, π).

2 The Implicit Function Theorem

In the previous paragraph we dealt with the question whether or not a system of
nonlinear equations is solvable; it was assumed that the number of equations coincides
with the number of the variables. In the following we consider the solvability of such
systems, which have more variables than equations. More precisely, we consider m
equations for m+ k variables, i.e.,

f1(x1, ..., xk, y1, ..., ym) = 0

...
...

fm(x1, ..., xk, y1, ..., ym) = 0
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and ask: Under which conditions can we express y1, ..., ym by functions of x1, ..., xk? In
different words: Can the above system of equations be solved for y?

If we examine the special case of systems of linear equations of the type

Ax+By = 0

with A ∈ Mm,k(R), x = (x1, ..., xk)
T and B ∈ Mm(R), y = (y1, ..., ym)T , then this is

possible if B is invertible. In this case we have

y = −B−1Ax.

In the following we will derive a local analogous result for continuously differentiable
functions f = (f1, ..., fm) : U ⊆ Rk × Rm → Rm.
To this end we define

a :=(a1, ..., ak), b := (b1, ..., bm), (a, b) := (a1, ..., ak, b1, ..., bm)

x :=(x1, ...xk), y := (y1, ..., ym), (x, y) := (x1, ..., xk, y1, ..., ym)

f(a, b) :=f(a1, ..., ak, b1, ..., bm), f(x, y) := f(x1, ..., xk, y1, ...ym),

Dxf(a, b) :=


∂f1
∂x1

(a, b) ... ∂f1
∂xk

(a, b)

. . .

. . .

. . .
∂fm

∂x1
(a, b) ... ∂fm

∂xk
(a, b)


m×k,

Dyf(a, b) :=


∂f1
∂y1

(a, b) ... ∂f1
∂ym

(a, b)

. . .

. . .

. . .
∂fm

∂y1
(a, b) ... ∂fm

∂ym
(a, b)


m×m.

The following theorem on implicit functions is the main result of this paragraph.

2.1 Theorem. (Implicit Function Theorem) Let U ⊆ Rk × Rm be an open set and
f : U → Rm be a continuously differentiable function. Further, let (a, b) ∈ U be such
that f(a, b) = 0 and

det(Dyf(a, b)) 6= 0.

Then there exists an open neighborhood W ⊆ Rk of a and one, and only one, vector-
valued continuously differentiable map ϕ : W → Rm with ϕ(a) = b, (x, ϕ(x)) ∈ U for
all x ∈ W and

f(x, ϕ(x)) = 0 for all x ∈ W,
Furthermore,

Dϕ(x) = −[Dyf(x, ϕ(x))]−1Dxf(x, ϕ(x)), x ∈ W.
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Let us consider the special casem = 1 = k. Let f : U → R, U ⊆ R2, be continuously
differentiable in a neighborhood of (a, b) ∈ R2 with f(a, b) = 0, ∂f

∂y
(a, b) 6= 0. Then

the implicit function theorem tells us: There exists a δ > 0 and a unique function
ϕ : (a− δ, a+ δ)→ R with ϕ(a) = b and f(x, ϕ(x)) = 0 for all x ∈ (a− δ, a+ δ).
For the validity of the theorem it is essential that U is reduced, for otherwise, to a
given x, there may exist several y-values (or even none).

Proof. Consider the map

F : U ⊆ Rk × Rm → Rk × Rm, F (x, y) = (x, f(x, y)).

Then F is continuously differentiable and we have

DF (x, y)(h, k) = (h,Dxf(x, y)h+Dyf(x, y)k), (x, y) ∈ U, (h, k) ∈ Rk × Rm. (2.1)

Further, DF (a, b) ∈ L(Rk × Rm) is invertible, since (2.1) implies that DF (a, b) is
injective:

If DF (a, b)(h, k) = (0, 0) ⇒ h = 0 and, by the hypothesis that Dyf(a, b) is invertible,
we have that Dyf(a, b)k = 0 ⇒ k = 0.

Thus, DF (a, b) is injective, hence also bijective and, therefore, invertible. Hence the
Inverse Function Theorem can be applied upon F at the point (a, b) and we obtain an
open neighborhood Ũ ⊆ U of (a, b) with the property that F̃ := F |Ũ : Ũ → F (Ũ) =: V
has a continuously differentiable inverse function G : V → Ũ .
Since F behaves like the identity map in the first k coordinates, this is also true for
G, i.e., there exists a continuously differentiable map g : V → Rm with

G(ξ, η) = (ξ, g(ξ, η)) for all (ξ, η) ∈ V.

Hence we have for (x, y) ∈ Ũ that

f(x, y) = 0⇔ F (x, y) = (x, 0)⇔ (x, y) = G(x, 0) = (x, g(x, 0))⇔ y = g(x, 0) (2.2)

and, in particular, b = g(a, 0). If we set

W :=

{
x ∈ Rk :

(
x

0Rm

)
∈ V

}
,

then V open implies W open and

V 3 F (a, b) = (a, f(a, b)) = (a, 0),

i.e., W is a neighborhood of a. Finally we define the function

ϕ : W → Rm, ϕ(x) := g(x, 0).
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Then, by (2.2), ϕ explicitly solves the equation f(x, y) = 0 in a unique way in a
neighborhood of the point (a, b). The chain rule gives the derivative of the function ϕ :

f(x, ϕ(x)) = f(x1, . . . , xk, ϕ1(x1, . . . , xk), . . . , ϕm(x1, . . . , xk)) = 0

⇒ Dxf(x, ϕ(x))IdRk +Dyf(x, ϕ(x))Dϕ(x) = 0.

In the case (x, y) = (a, b) we have, since ϕ(a) = b,

Dϕ(a) = −[Dyf(a, b)]−1Dxf(a, b).

�

We note, that analogously to the inverse theorem the derivative Dϕ(a) can be
determined without explicit knowledge of ϕ.

2.2 Example. a) Level curves. Let U ⊆ R2 be an open set, f : U → R be a
continuously differentiable function and c ∈ R. Then we call

Nf (c) = {(x, y) ∈ U : f(x, y) = c}

the level set of f . The level set is also denoted by level curve though, in general,
the level set is not necessarily a curve. The implicit function theorem in the case
m = k = 1 applied to the function

fc : U → R, fc(x, y) := f(x, y)− c,

yields the following result.

If (a, b) ∈ U and f(a, b) = c and if

(#) grad fc(a, b) = (fx(a, b), fy(a, b)) 6= (0, 0),

then the equation f(x, y) = c can be solved in the form

1. y = ϕ(x) in a neighborhood of a, if fy(a, b) 6= 0,

2. x = ψ(y) in a neighborhood of b, if fx(a, b) 6= 0.

In other words: The level sets through the point (a, b), satisfying (#) locally, can
be represented via a continuously differentiable map of the form x 7→ (x, ϕ(x))
in the case 1 and y 7→ (ψ(y), y) in the case 2 locally. Thus, in fact, the level sets
are described locally by level curves if (#) holds.

b) Systems of equations. If k = 1 and m = 2 consider the system

f1(x, y1, y2) = x3 + y3
1 + y3

2 − 7 = 0

f2(x, y1, y2) = xy1 + y1y2 + xy2 + 2 = 0 (⇒ f1, f2 ∈ C∞)
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at the point (2,−1, 0). Then f1(2,−1, 0) = 0 and f2(2,−1, 0) = 0.

With f = (f1, f2) we have

Dyf(2,−1, 0) =

(
3y2

1 3y2
2

x+ y2 x+ y1

)∣∣∣∣
(2,−1,0)

=

(
3 0
2 1

)
.

Since this matrix is invertible, there exist two continuously differentiable functions
ϕ1, ϕ2 : W → R, where W ⊆ R is a neighborhood of a = 2 with the following
property

(ϕ1(2), ϕ2(2)) = (−1, 0)

and

f1(x, ϕ1(x), ϕ2(x)) = 0, f2(x, ϕ1(x), ϕ2(x)) = 0 on W.

For the derivatives of ϕ1 and ϕ2 at a = 2 we obtain

(
ϕ′1(2)
ϕ′2(2)

)
= −

(
3 0
2 1

)−1
(
∂f1
∂x

(2,−1, 0)

∂f2
∂x

(2,−1, 0)

)

=

(
−1

3
0

2
3
−1

) (
3x2

y1 + y2

)∣∣∣∣
(2,−1,0)

=

(
−4
9

)
.

3 Submanifolds and extremal problems with con-

straints

From a geometrical point of view, the above implicit function theorem leads to the idea
of differentiable manifolds. This concept plays an important role in modern mathe-
matics. Here first properties are presented.

3.1 Definition. A subset M ⊆ Rn is called a d-dimensional differentiable submanifold
of Rn, if to each a ∈M there exist a neighborhood U of a, which is open in Rn, and a
diffeomorphism ϕ : U → V onto an open subset V ⊆ Rn such that

ϕ(U ∩M) = V ∩ (Rd × {0}).

One- and two-dimensional submanifolds of Rn are also called curves and surfaces
embedded (submersed) in Rn; resp.; differentiable submanifolds of Rn of dimension
(n− 1) are called hypersurfaces. In the following, when we speak about a submanifold,
we understand this in the sense of a differentiable submanifold of Rn. Examples of
manifolds can easily be obtained via graphs of differentiable functions as the following
theorem shows.
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3.2 Theorem. Let O ⊆ Rd be open and f : O → Rm be a continuously differentiable
function. Then graph(f) is a d-dimensional submanifold of Rd+m.

Proof. Set U = O × Rm; then U is open and

ϕ : U → Rd+m, (x, y) 7−→ (x, y − f(x)) ,

is continuously differentiable with ϕ(U) = U . Further ϕ : U → U is bijective with
ϕ−1(x, z) = (x, z + f(x)), hence a diffeomorphism of U onto U with

ϕ(U ∩ graph(f)) = O × {0} = U ∩ (Rd × {0}).

�

The following theorem on the regular value is one of the most useful criteria for
manifolds. Let us recall the following theorem from Linear Algebra: If f : Rn → Rm

is a regular, i.e. a surjective and linear map, then, for each c ∈ Rm, the set of all
solutions of the equation f(x) = c is an affine subspace of Rn of dimension n−m.

In the following we generalize this result to the case when f is a continuously
differentiable function and c a regular value.

3.3 Definition. A point x ∈ U ⊆ Rd is called a regular point of the continuously
differentiable function f : U → Rn, if the derivative Df(x) ∈ L(Rd,Rn) is surjective.
Further, a point y ∈ Rn is called a regular value of f , if all x ∈ f−1(y) are regular
points of f .

3.4 Remark. a) If d < n , then f has no regular points.

b) If d ≥ n, then x ∈ U is a regular point of f , if the derivative Df(x) has rank n.

c) If n = 1, then x ∈ U is a regular point of f ⇔ ∇f(x) 6= 0.

d) A point y ∈ Rn is a regular value of f if and only if the matrix Df(x) has rank
n in all points x ∈ f−1(y).

e) If a ∈ U is a regular point of the continuously differentiable function f : U →
Rn, then, by the implicit function theorem (possibly after a suitable orthogonal
transformation), there exist n variables such that the system of equations

f1(x1, ..., xd) = 0

...
...

fn(x1, ..., xd) = 0

can uniquely be solved for these variables in a neighborhood of a as a function
of the remaining (d− n) variables.
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f) If 0 ∈ f(U) is a regular value of the cont. differentiable function f : U → Rn,
then, to each a ∈ f−1(0), there exists a neighborhood V ⊆ Rd of a such that
f−1(0)∩V can be represented as a graph of a continuously differentiable function
in (d− n) variables.

The announced theorem on the regular value now reads as follows

3.5 Theorem. If U ⊆ Rd is an open set and c a regular value of f : U → Rn, f being
continuously differentiable, then f−1(c) is a (d− n)-dimensional submanifold of Rd.

The proof follows directly from Theorem 3.2 and Remark 3.4(e).

3.6 Example. a) The Euclidean (n − 1)-sphere Sn−1 := {x ∈ Rn : ‖x‖2 = 1} is a
(n− 1)-dimensional submanifold of Rn. To realize this consider the continuously
differentiable function

f : Rn → R, x 7−→ ‖x‖22.

Since ∇f(x) = 2x for all x ∈ Rn, we have that 1 is a regular value. Since
f−1(1) = S, the assertion follows by the theorem on the regular value.

b) Consider on U = R3 \ ({0} × {0} × R) the continuously differentiable function

f : U → R, f(x1, x2, x3) :=

(√
x2

1 + x2
2 − 2

)2

+ x2
3.

Since 1 is a regular value of f we have that T2 := f−1(1) is a 2-dimensional
submanifold of R3. T2 is the 2-dimensional torus which results by the revolution
of the circle (x1 − 2)2 + x2

3 = 1, lying in the (x1, x3)-plane, around the x3-axis.

c) If A is a real, symmetric (n× n)-matrix with detA 6= 0, then the quadric

Q := {x ∈ Rn : 〈x,Ax〉 = 1}

is a (n− 1)-dimensional submanifold of Rn.
For the proof choose f : Rn → R, f(x) := 〈x,Ax〉 and note that Q = f−1(1).
Since Df(x) = 2xTA 6= 0 for all x ∈ Rn with x 6= 0, we have that 1 is a regular
value of f and the assertion again follows by the theorem on the regular value.

If one wants to carry over the concepts of the differential calculus to maps between
submanifolds, it is very useful to introduce linear structures like tangent space and
normal space on manifolds in the Euclidean space Rn. We start with the idea of a
tangent space.

3.7 Definition. Let M ⊆ Rn; a vector v ∈ Rn is called tangent vector on M at the
point a ∈M , if there exists a continuously differentiable curve γ : (−ε, ε)→M, ε > 0,
in M with γ(0) = a and γ′(0) = v.
The set of all tangent vectors on M at a is called the tangent cone of M at a and is
denoted by TaM . If TaM is a vector space, then TaM is also called tangent space.
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3.8 Theorem. Let M ⊆ Rn be a d-dimensional submanifold. Then we have for each
a ∈M

a) TaM is a vector space of dimension d

b) If f : U → Rm, U ⊆ Rn open, is a continuously diff. function, c a regular value
of f and M = f−1(c), then

TaM = kernDf(a) = {v ∈ Rn : Df(a)v = 0}.

Proof.

a) The assertion is easy to see for the d-dimensional submanifoldM = V ∩(Rd×{0}),
where V ⊂ Rn is open. In this case

Ta(V ∩ (Rd × {0})) = Rd × {0}.

In the general case we consider the map ϕ : U → V from Definition 3.1 on the
submanifold M which associates to each curve γ : (−ε, ε) → M ∩ U the image
curve γ̃ := ϕ◦γ in V ∩ (Rd×{0}). Each curve in V ∩ (Rd×{0}) is such an image
curve and for two curves γ and γ̃ we have

γ′(0) = [Dϕ(a)]−1γ̃′(0).

Hence
Ta(M ∩ U) = [Dϕ(a)]−1(Rd × {0})

and, since TaM = Ta(M ∩ U), the assertion (a) follows.

b) For γ : (−ε, ε) → M we have f ◦ γ = c and hence Df(a)γ′(0) = 0. Therefore,
TaM ⊆ kernDf(a). Since Df(a) : Rn → Rm is surjective by hypothesis we get
from the dimension formula of Linear Algebra

dim kern Df(a) = n−m = dim M = d.

Therefore, TaM is no genuine subvector space of kernDf(a) and hence the as-
sertion.

�

We define a normal vector of a submanifold M ⊆ Rn at the point a ∈ M as that
vector v ∈ Rn, which is perpendicular to the tangent space TaM ; the normal space
NaM is the orthogonal complement to TaM , i.e.

NaM := (TaM)⊥.

The above theorem on the tangent space gives the following Corollary.
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3.9 Corollary. Let M = f−1(c) be the level set of a continuously differentiable function
f = (f1, ..., fn−d) : U → Rn−d, where U ⊆ Rn is open, for the regular value c ∈ Rn−d.
Then the gradients ∇f1(a), . . . ,∇fn−d(a) at a ∈ M form a basis of the normal space,
i.e., we have

NaM = span {∇f1(a), ...,∇fn−d(a)}.

Proof. The rows of the matrix Df(a) are described by the above gradients. By
Theorem 3.8 we have for v ∈ Rn that

v ∈ TaM ⇐⇒ 〈∇fi(a), v〉 = 0 for i = 1, ..., n− d.

Hence the vectors ∇fi(a), i ∈ {1, ..., n−d}, are perpendicular to TaM . By hypothesis,
rank Df(a) = n − d. Therefore, the vectors ∇fi(a), i ∈ {1, ..., n − d}, are linear
independent and form a basis for NaM . �

3.10 Example. a) For the sphere Sn−1 ⊆ Rn we have Sn−1 = f−1(1), where f :
Rn → R, x 7−→ ‖x‖22. Since ∇f(a) = 2a, it follows that

NaS
n−1 = {λa : λ ∈ R}, a ∈ Sn−1.

b) A normal vector to the torus (surface) T2, described in Example 3.6 (b) at the
point (a1, a2, a3) is given by 2(a− h), where

h =

(
2a1√
a2

1 + a2
2

,
2a2√
a2

1 + a2
2

, 0

)
.

c) If U ⊆ Rn is open, f : U → R is continuously differentiable, then the unit normal
ν(x), i.e. a normal vector of length 1, to the manifold M = graph f at the point
a = (x, f(x)) is given by

ν(x) =
(−∇f(x), 1)

(1 + |∇f(x)|2)1/2
.

In many applications one is not only looking for the mere extremum of a function
f : Rn → R, but one is interested in extremal values under side conditions.

More precisely: Given f : U ⊆ Rn → R and a manifold M defined via g =
(g1, ..., gm) : U ⊆ Rn → Rm, M := (x ∈ U : g(x) = 0).
Look for points x0 ∈M such that

f(x0) ≤ f(x) for all x ∈M ∩ Ux0

or
f(x0) ≥ f(x) for all x ∈M ∩ Ux0
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for some neighborhood Ux0 ⊆ U of x0. Such a point is called a local extremum of f
under the side condition or constraint g = 0.

The following Lagrange multiplier rule gives a necessary condition for the existence
of such extremal values under constraints.

3.11 Theorem. (Lagrange multiplier rule). Let U ⊆ Rn be open, m < n, f : U → R
and g = (g1, ..., gm) : U → Rm be continuously differentiable functions. Let 0 be a
regular value of g and M = g−1(0) 6= ∅ be nonempty. If f has a local extremum under
the constraint g = 0 at x0, then there exist λ1, ..., λm ∈ R such that

grad f(x0) =
m∑
j=1

λj grad gj(x0).

Proof. By the theorem on the regular value, M is a (n−m)-dimensional submanifold
of Rn. Hence, to each v ∈ Tx0M there exists a continuously differentiable curve γ :
(−ε, ε)→M with γ(0) = x0 , γ

′(0) = v. Then the function

F : (−ε, ε)→ R, F (t) := f(γ(t))

has a local extremum at t = 0. Therefore, F ′(0) = 0, which means on account of the
chain rule

0 = F ′(0) =
n∑
i=1

∂f(x0)

∂xi
γ′i(0) = 〈grad f(x0), v〉,

i.e., grad f(x0) ∈ Nx0M . By Corollary 3.9 this implies that there exist unique λ1, ..., λm ∈
R such that grad f(x0) =

∑m
i=1 λj∇gj(x0). �

3.12 Remark. a) The numbers λ1, ..., λm are called Lagrange multipliers

b) In the special case m = 1, we have: Let U ⊆ Rn be open, f, g : U → R
continuously differentiable. If ∇g(x0) 6= 0 and if f has a local extremum at
x0 under the side condition g = 0, then there exists some λ ∈ R such that
grad f(x0) = λ grad g(x0).

3.13 Example. Let A = Mn(R) be a symmetric matrix, f : Rn → R, f(x) := 〈x,Ax〉
and Sn−1 := {x ∈ Rn : ‖x‖2 = 1} the (n − 1)-sphere. Since Sn−1 is compact, f
continuous on Sn−1, the function f attains a maximum on Sn−1. We determine this
point x0 via the Lagrange multiplier rule. To this end we observe that Sn−1 = g−1(0) for
g : Rn → R, g(x) = 〈x, x〉−1. Thus we have to maximize f under the constraint g = 0.
By Example 1.3 in Chapter VII, the functions f, g are continuously differentiable with

grad f(x0) = 2Ax0 , grad g(x0) = 2x0 6= 0.

Hence, by the Lagrange multiplier rule, there exists λ ∈ R such that

Ax0 = λx0 ,
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i.e., x0 is an eigenvector of the matrix A. Since ‖x0‖2 = 1 it follows that

〈x0, Ax0〉 = 〈x0, λx0〉 = λ.

Thus we have proved the following theorem from Linear Algebra.

3.14 Theorem. If A ∈Mn(R) is a symmetric matrix, then

M := max
‖x‖2=1

〈x,Ax〉 ∈ R

is an eigenvalue of A and each x0 ∈ Rn with ‖x0‖2 = 1 and 〈x0, Ax0〉 = M is an
eigenvector associated to the eigenvalue M .

As a further application we prove the following spectral theorem for symmetric
matrices from Linear Algebra.

3.15 Theorem. (Spectral theorem for symmetric matrices). If A ∈ Mn(R) is a sym-
metric matrix, then there exist λ1 ≥ λ2 ≥ ... ≥ λn, λj ∈ R, and x1, ..., xn ∈ Sn−1

with Axj = λjxj for all j ∈ {1, ..., n}. Furthermore, the vectors x1, ..., xn form an
orthonormal basis of Rn and A is of diagonal type w.r.t. this basis.

Proof. By Theorem 3.14 there exist x1 ∈ Sn−1 and λ1 ∈ R such that Ax1 = λ1x1.
We construct a second vector x2 ∈ Sn−1 as follows: Define g := (g1, g2), g0(x) :=
‖x‖22 − 1, g1(x) := 2〈x1, x〉. Then g−1(0) = Sn−1 ∩ {x1}⊥ =: K and K is compact.
Hence the continuous function f : K → R, x 7−→ 〈x,Ax〉, attains a maximum at some
x2 ∈ K (cf. Corollary 3.9 in Chapter VI) with f(x) ≤ f(x2) for all x ∈ K. Further,
Dg(x) has rank 2 for all x ∈ K. By the Lagrange multiplier rule (Theorem 3.11), there
exist µ0, µ1 ∈ R such that

(#) ∇f(x2) = 2Ax2 = µ0∇g0(x2) + µ1∇g1(x2) = µ0 2x2 + µ1 2x1.

By Theorem 3.14 and since by construction 〈x2, x1〉 = 0, we obtain

〈Ax2, x1〉 = 〈x2, Ax1〉 = 〈x2, λ1x1〉 = λ1〈x2, x1〉 = 0.

Together with (#) this latter equation yields

0 = 〈Ax2, x1〉 = µ0〈x2, x1〉+ µ1〈x1, x1〉 = µ1 .

Thus (#) implies Ax2 = µ0 x2, which means that µ0 is an eigenvalue of A associated
to the eigenvector x2. The value of µ0 can be computed from

µ0 = µ0〈x2, x2〉 = 〈Ax2, x2〉 = f(x2).

If we iterate this procedure, the assertion follows. �
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Chapter IX

Paths and vector fields

We begin this chapter with the concept of a path in Rn. This concept has been
influenced by the need in physics – more precisely in kinematics – to consider the
movement of a point in space by letting γ(t) denote the position at time t. The origin
of the concept goes back to the French mathematician C. JORDAN (1838-1922). Paths
in this sense can have very surprising properties. For example, G. PEANO (1858-1932)
constructed a path which completely covers a square.

A basic task in the theory of paths is the study of rectifiability, i.e. , the task of
finding the lengths of paths. Closely connected with this problem are the so-called
functions of bounded variation.

In the second section we discuss vector fields and line integrals. The latter are
integrals which are taken over images of intervals under continuously differentiable
maps – examples of paths – rather than over intervals. This extension of the concept
of integration has important consequences. One can for example use this to characterize
those vector fields which are gradients of so-called potential functions. The basic
concepts of the divergence and curl of a vector field also play an important role in
this connection.

1 Paths

We begin this section with the definition of a path

1.1 Definition. A continuous map γ : I → Rn defined on an interval I ⊆ R is called
a path in Rn. In place of the word “path” we will also use “curve” and “arc”.
A path is called (continuously) differentiable, if γ is (continuously) differentiable.
The image γ(I) is called the trace of γ.

So according to the definition above a path is not simply a set of points in Rn, but
the knowledge of γ also includes the information in which direction a point on γ runs
through the trace.

211
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1.2 Example. a) Let f : I ⊆ R→ R be a continuous function. Then

γ : I → R2, γ(t) := (t, f(t)),

is a curve. The trace of γ is the graph of f . Furthermore, if f is differentiable
then also γ is differentiable, and we have

γ′(t) = (1, f ′(t)).

b) For r > 0 the curve

γ : [0, 2π]→ R2, γ(t) = (r cos t, r sin t),

describes a circular movement around 0 ∈ R2 with radius r.

Since γ is differentiable and

γ′(t) = (−r sin t, r cos t),

the (Euclidean) norm of the velocity vector equals r.

c) For a ∈ Rm and v ∈ Rm \ {0} the curve

γ : R→ Rm, γ(t) = a+ vt,

describes a movement in a straight line in the direction of v with velocity γ′(t) = v.

d) For r > 0 and c 6= 0 the curve

γ : R→ R3, γ(t) = (r cos t, r sin t, ct)

describes a helix. The trace lies on the cylinder {(x, y, z) ∈ R3 : x2 + y2 = r2},
and 2πc is the lead of the helix.

e) Neil’s parabola is given by

γ : [−1, 1]→ R2, γ(t) = (t2, t3).

Aside from the circle this was historically the first (nonlinear) curve for which
one was able to calculate the arc length.

f) The cycloid is given by the curve

γ : R→ R2, γ(t) = (t− sin t, 1− cos t).

It describes the movement of a point on the boundary of the unit disc as the
latter rolls on the x-axis.

The cycloid is interesting also from another perspective. It is the solution of the
so-called Brachistochrone proplem – the variational problem of finding the curve
between two fixed points which minimizes the time used by a point mass starting
at the first point with zero speed and travelling along the curve to the second
point, under the action of a constant gravity and assuming no friction. Bernoulli,
Huygens and Leibnitz found that the solution to this problem is the cycloid.
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1.3 Definition. Let γ : I → Rn be a differentiable path. The vector

γ′(t) = (γ′1(t), ..., γ
′
n(t)) ∈ Rn

is called the tangent vector of the curve γ in t.

One can interpret γ′(t) as the velocity of the curve γ in the point t. The norm of
the velocity vector is then

‖γ′(t)‖ =
√
|γ′1(t)|2 + ...+ |γ′n(t)|2.

In the following we will investigate the arc length of a given curve. The basic idea
consists of approximating the arc length via suitable polygonal lines. Thus we consider
a partition P of the interval [a, b], i.e.

a = t0 ≤ t1 ≤ ... ≤ tk = b,

and define the length of a polygonal line with the vertices γ(t0), . . . , γ(tk) by

LP,γ :=
k∑
j=1

‖γ(tj)− γ(tj−1)‖.

1.4 Definition. A path γ : [a, b]→ Rn is called rectifiable with length Lγ in case

Lγ := sup
P
LP,γ <∞.

Lγ is called the arc length of γ.

1.5 Theorem. Let γ : [a, b] → Rn be a continuously differentiable curve. Then γ is
rectifiable and

Lγ =

∫ b

a

‖γ′(t)‖2 dt =

∫ b

a

(|γ′1(t)|2 + . . .+ |γ′n(t)|2)1/2 dt.

In particular, the graph of a C1-function f : [a, b]→ R has the length

Lf =

∫ b

a

√
1 + |f ′(t)|2 dt.

For the proof of this theorem we will use the notion of the integral of an n-tuple of
continuous functions. If we set∫ b

a

γ(t) dt :=

(∫ b

a

γ1(t) dt, . . . ,

∫ b

a

γn(t) dt

)
,
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then ∥∥∥∥∫ b

a

γ(t) dt

∥∥∥∥
2

≤
∫ b

a

‖γ(t)‖2 dt.

For, with the notation v =
∫ b
a
γ(t)dt ∈ Rn we have∥∥∥∥∫ b

a

γ(t) dt

∥∥∥∥2

2

=

〈∫ b

a

γ(t) dt, v

〉
=

∫ b

a

〈γ(t), v〉 dt

≤
∫ b

a

‖γ(t)‖2 dt · ‖v‖2

by the Cauchy-Schwarz inequality.

Proof. Let P be a partition of [a, b] given by P : a = t0 < t1 < ... < tk = b. The
fundamental theorem of calculus implies that

LP,γ =
k∑
j=1

‖γ(tj)− γ(tj−1)‖2 =
k∑
j=1

∥∥∥∥∥
∫ tj

tj−1

γ′(t) dt

∥∥∥∥∥
2

(1.1)

≤
k∑
j=1

∫ tj

tj−1

‖γ′(t)‖2 dt =

∫ b

a

‖γ′(t)‖2 dt =: L.

Thus γ is rectifiable and Lγ ≤ L.
We will now show that Lγ = L. It is enough to show that for all ε > 0 there exists a
partition P : a = t0 < ... < tk = b of [a, b] with

LP,γ ≥ L− ε.

We need a polygonal line which lies sufficiently close to the curve, and with vertices
on the curve. We write γ(t) = (γ1(t), ..., γn(t)) for t ∈ [a, b]. Let ε > 0.

Since γ′i is uniformly continuous on [a, b] for each 1 ≤ i ≤ n, we know that there
exists a partition Pi : a = t0 < ... < tki

= b such that

|γ′i(s)− γ′i(t)| < ε

for all s, t ∈ [tj−1, tj] and for all 1 ≤ j ≤ ki. We let the partition P : a = t0 < ... < tk = b
be a common refinement of all the Pi’s for 1 ≤ i ≤ n. Then for all 1 ≤ i ≤ n, all
1 ≤ j ≤ k and all s, t ∈ [tj−1, tj] we have

|γ′i(s)− γ′i(t)| < ε.

Let 1 ≤ i ≤ n, 1 ≤ j ≤ k. By the mean value theorem from Analysis I there exists
τij ∈ (tj−1, tj) such that

γi(tj)− γi(tj−1)

tj − tj−1

= γ′i(τij)
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or
γi(tj)− γi(tj−1) = γ′i(τij)(tj − tj−1).

We write cij := γ′i(τij) and define an n-tuple ϕ = (ϕ1, ..., ϕn) of step functions by letting
ϕi(a) = γ′i(a) and

ϕi(t) = cij

for t ∈ (tj−1, tj]. Then
|γ′i(t)− ϕi(t)| < ε

and
‖γ′(t)− ϕ(t)‖2 <

√
nε

for t ∈ [a, b].
Now t 7−→

∫ t
a
ϕi(s)ds+γi(a), t ∈ [a, b], describes the i-th component of the polygonal

line we use to approximate γ. We have

LP,γ =
k∑
j=1

‖γ(tj)− γ(tj−1‖2 =
k∑
j=1

∥∥∥∥∥
∫ tj

tj−1

ϕ(s) ds

∥∥∥∥∥
2

=
k∑
j=1

‖(c1j (tj − tj−1), . . . , cnj (tj − tj−1)‖2

=
k∑
j=1

√
c21j + ...+ c21n (tj − tj−1) =

k∑
j=1

∫ tj

tj−1

‖ϕ(s)‖2 ds =

∫ b

a

‖ϕ(s)‖2 ds.

On the other hand, we have∫ b

a

‖ϕ(s)‖2 ds ≥
∫ b

a

‖γ′(s)‖2 ds−
∫ b

a

‖ϕ(s)− γ′(s)‖2 ds

≥
∫ b

a

‖γ′(s)‖2 ds− ε
√
n(b− a)

= L− ε
√
n(b− a).

Since ε > 0 was arbitrary the result follows. �

1.6 Example. a) We calculate the length of one arc of the cycloid

γ : R→ R2, γ(t) = (t− sin t, 1− cos t),

as follows. We note that γ is differentiable with γ′(t) = (1− cos t, sin t). Thus

‖γ′(t)‖22 = 1− 2 cos t+ cos2 t+ sin2 t︸ ︷︷ ︸
=1

= 2− 2 cos t = 4 sin2

(
t

2

)
.
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Thus

Lγ|[0,2π]
=

∫ 2π

0

2

∣∣∣∣sin( t2
)∣∣∣∣ dt

= −4 cos

(
t

2

)∣∣∣∣2π
0

= 8.

b) We define γ : [0, 1]→ R by γ(t) = (t, f(t)) ,

f(t) =

{
t2 cos π

t2
if t 6= 0

0 if t = 0.

Then γ is continuous, and provides an example of a curve which is not rectifiable.
To see this we define the partition P of [0, 1] by

P : 0 = t0 < k−
1
2 < (k − 1)−

1
2 < ... < (2)−

1
2 < 1,

and note that f(j−1/2) = (−1)j

j
, 1 ≤ j ≤ k.

So we have

LP,γ > 1 +
1

2
+ ...+

1

n
,

and so Lγ =∞.

The concept of a rectifiable path is closely connected with the concept of a function
of bounded variation.

Let f : I = [a, b] → R and let P be a partition of I. The variation of f with
respect to P is given by

varP,f :=
k∑
j=1

|f(tj)− f(tj−1)| .

The total variation of f on I is given by the supremum taken over all partitions of I,
i.e.,

V b
a (f) := sup

P
varP,f .

If V b
a (f) < ∞, then we say that f is of bounded variation on I. We denote the class

of all such functions by BV (I). If f : [a, b] → R is a path, then Lf = V b
a (f). In the

following lemma we provide some basic properties of functions f ∈ BV [a, b].

1.7 Lemma. For functions f ∈ BV [a, b] the following statements hold:

(a) BV [a, b] ⊂ B[a, b], and

|f(a)− f(b)| ≤ V b
a (f).
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(b) BV [a, b] is a vector space and even an algebra. We have the following inequalities:

(i) V b
a (λf + µg) ≤ |λ|V b

a (f) + |µ|V b
a (g) for λ, µ ∈ R, f, g ∈ BV [a, b].

(ii) V b
a (fg) ≤ ‖f‖∞V b

a (g) + ‖g‖∞V b
a (f).

(c) For a < c < b we have

V b
a (f) = V c

a (f) + V b
c (f).

(d) If f is monotone on [a, b], then V b
a (f) = |f(b)− f(a)| .

(e) If f ∈ C1([a, b],R), then V b
a (f) =

∫ b
a
|f ′(t)| dt .

Proof. See the Exercises. �

In the following theorem we characterize the functions of bounded variation as the
functions which can be given as the difference of two monotone functions.

1.8 Theorem. A function f : [a, b] → R is of bounded variation if and only if there
exist increasing functions g, h : [a, b]→ R such that f = g − h .

Proof. Let f ∈ BV [a, b] and, for t ∈ [a, b], set g(t) := V t
a (f). Then by Lemma 1.7 (c)

we have
0 ≤ V d

c (f) = V d
a (f)− V c

a (f) = g(d)− g(c)

for all a ≤ c < d ≤ b. So g is increasing.
Furthermore, by Lemma 1.7 (a) we have

f(d)− f(c) ≤ V d
c (f) = g(d)− g(c) ,

and so for h := g − f we have h(c) ≤ h(d). Thus also h is increasing.

The opposite direction follows immediately from Lemma 1.7 (d) and (b). �

If f = (f1, . . . , fn) : I → Rn is a path, then

V b
a (fi) ≤ Lf ≤ V b

a (f1) + . . .+ V b
a (fn).

Thus we obtain the connection between functions of bounded variation and rectifiable
paths which was mentioned earlier.

1.9 Theorem. A path f : I → Rn is rectifiable if and only if all component functions
fi are of bounded variation on I.
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2 Vector fields and line integrals

Let U ⊂ Rn be an open set and F = (F1, . . . , Fn) : U → Rn be a continuous function.
Then this map is often called a vector field. Vector fields can be visualized if one brings
to mind that at each x ∈ U there is attached the vector F (x). Important examples of
vector fields in physics are so-called force fields or velocity fields. In the following we
want to discuss the following classes of vector fields in more detail.

2.1 Example. a) Constant vector fields. These are defined by F (x) := y for some
fixed y ∈ Rn.

b) Central fields. Let I = [a, b] ⊂ R be an interval, K := {x ∈ Rn : a < |x| < b} a
spherical shell in Rn and g : I → R a continuous function. Then

F : K → Rn, F (x) := g(‖x‖)x

is called a central field.

c) Rotational fields. Let I = [a, b] be an interval, K := {x ∈ R2 : a < |x| < b} an
annulus in R2 and g : I → R a continuous function. Then

F : K → R2, F (x) := g(‖x‖)(−x2, x1)
T

is called a rotational field.

d) A vector field F is called a gradient field, if there exists a continuously differen-
tiable function V : U → R such that

gradV = F.

Of particular importance are the notions of divergence and rotation of vector fields,
defined as follows.

2.2 Definition. If U ⊂ Rn is open and F : U → Rn a continuously differentiable
vector field, then the function

divF (x) :=
∂F1

∂x1

+ . . .+
∂Fn
∂xn

is called the divergence of F at the point x ∈ U.

One easily checks that for C1-vector fields F and G as well as for scalar C1-
functions h : Rn → R one has

div(F +G) = divF + divG, div (hF ) = ∇h · F + h divF.
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2.3 Definition. If U ⊂ R3 is open and F : U → R3 a continuously differentiable
vector field, then one defines rotF : U → R3, the rotation of F , by

rotF :=
(∂F3

∂x2

− ∂F2

∂x3

,
∂F1

∂x3

− ∂F3

∂x1

,
∂F2

∂x1

− ∂F1

∂x2

)
.

If one uses the vector product from Linear Algebra, one can formally write

rotF = ∇× F and divF = ∇ · F.

For continuously differentiable vector fields F,G ∈ C1(R3,R3) and scalar functions
h ∈ C1(R3,R) we have the following relations

a) rot (hF ) = h rotF − F ×∇h

b) div (F ×G) = G · rotF − F · rotG

c) rot (∇h) = 0

d) div (rotF ) = 0

e) rot (rotF ) = ∇(divF )−∆F.

As a motivation for the concept of a line integral let us consider a particle that moves
along the image of a path γ : [a, b] → R3 while being acted upon by a force field F.

Then the work done by F is given by the integral
∫ b
a
F (γ(t)) · γ′(t) dt, since only the

tangential part of F along γ will yield a contribution. By analogy, we define the line
integral as follows.

2.4 Definition. Let γ : [a, b] → Rn be a piecewise continuously differentiable path
and f a continuous, real-valued function defined on γ([a, b]). Then∫

γ

f(x) dxj :=

∫ b

a

f(γ(t))γ′j(t) dt , j = 1, . . . , n,

is called the line integral of f along γ with respect to xj .
If f = (f1, . . . , fn) : γ([a, b])→ Rn is continuous, then we define the line integral of f
along γ by∫

γ

f(x) dx :=

∫
γ

f1(x) dx1 + · · ·+
∫
γ

fn(x) dxn =

∫ b

a

f(γ(t)) · γ′(t) dt.

2.5 Remark. The value of the line integral
∫
γ
f(x) dx does not depend on the parametriza-

tion of the path.
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2.6 Example. Given the path γ by

γ : [−π
2
,
π

2
]→ R2, γ(t) = (cos t, sin t),

i.e. a semi-circle in the plane. Let us integrate the function f(x1, x2) := (x2,−x1)
T

along γ. Then, with x = (x1, x2)
T ,∫

γ

f(x) dx =

∫
γ

f1(x) dx1 +

∫
γ

f2(x) dx2

=

∫ π/2

−π/2
sin t (− sin t) dt+

∫ π/2

−π/2
(− cos t) cos t dt

= −
∫ π/2

−π/2
(sin2 t+ cos2 t︸ ︷︷ ︸

=1

) dt = −π .

2.7 Definition. Let U ⊂ Rn be open and F : U → Rn be a vector field.

(a) If F is a gradient field, then there exists a function V ∈ C1(U,R) with ∇V = F
on U. Such a function V is called a potential of F.

(b) Let γ : [a, b] → U ⊂ Rn be a piecewise continuously differentiable path with
γ(a) = x0 and γ(b) = y0 . If for every piecewise continuously differentiable path σ,
connecting x0 with y0, we have that

∫
σ
f(x) dx =

∫
γ
f(x) dx, i.e., the value of the line

integral
∫
γ
f(x) dx does not depend on γ itself, but only on the endpoints of γ, then

we say that
∫
γ
f(x) dx is independent of the path.

The following theorem characterizes those vector fields having the line integral
independent of the path.

2.8 Theorem. Let U ⊂ Rn be an open, convex set and F : U → Rn be a contin-
uous vector field. Then the line integral

∫
γ
F (x) dx is independent of the (piecewise

continuously differentiable) path if and only if F is a gradient field. In this case∫
γ

F (x) dx = V (γ(b))− V (γ(a)) ,

where V is a potential of F and γ : [a, b]→ U ⊂ Rn is piecewise cont. differentiable.

Proof. “⇐ ”: If V is a potential of F, then∫
γ

F (x) dx =

∫ b

a

n∑
j=1

Fj(γ(t))γ
′
j(t) dt

=

∫ b

a

dV (γ(t))

dt
dt = V (γ(b))− V (γ(a)) .
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The converse implication “⇒ ” is left to the reader as an exercise. �

In the following we are looking for simple criteria to prove that a given vector
field is a gradient field. A necessary condition can immediately be given. If F is a
continuously differentiable gradient field, then the potential V ∈ C2(U,R) satisfies

∂2V

∂xi∂xj
=

∂2V

∂xj∂xi
,

that is
∂Fj
∂xi

=
∂Fi
∂xj

on U, i, j = 1, . . . , n.

We would like now to dicuss the converse question if the above condition implies the
independence of path of the line integral. It is not surprising that the answer to this
question depends on the geometry of the domain.

A set U ⊂ Rn is called star-shaped, if there exists some x0 ∈ U such that every segment
x0x ⊂ U for every x ∈ U. We also say that U is star-shaped with respect to x0 .

Note that every convex set U is star-shaped (with respect to every x0 ∈ U), but
that a star-shaped set is not necessarily convex.

2.9 Theorem. Let U ⊂ Rn be open and star-shaped with respect to x0 ∈ U and
F = (F1, . . . , Fn) : U → Rn be a continuously differentiable vector field satisfying

∂Fj
∂xi

=
∂Fi
∂xj

on U, i, j = 1, . . . , n.

Then F is a gradient field.

Proof. Without loss of generality we can assume that x0 = 0. Consider

V (x) :=
n∑
i=1

(∫ 1

0

Fi(tx) dt

)
xi .

Then

∂V

∂xj
(x) =

n∑
i=1

∂

∂xj

(∫ 1

0

Fi(tx) dt

)
xi +

n∑
i=1

(∫ 1

0

Fi(tx) dt

)
∂xi
∂xj

=
n∑
i=1

(∫ 1

0

t
( ∂

∂xj
Fi

)
(tx) dt

)
xi +

∫ 1

0

Fj(tx) dt .

Moreover,

d

dt

(
tFj(tx)

)
= Fj(tx) + t

d

dt
Fj(tx) = Fj(tx) + t

n∑
i=1

( ∂

∂xi
Fj

)
(tx)xi

= Fj(tx) + t
n∑
i=1

( ∂

∂xj
Fi

)
(tx)xi
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by hypothesis. Hence

∂V

∂xj
(x) =

∫ 1

0

d

dt

(
tFj(tx)

)
dt = tFj(tx)

∣∣∣t=1

t=0
= Fj(x).

�

2.10 Remark. If U ⊂ R3 is an open ball and F : U → R3 a continuously differentiable
vector field, then Theorem 2.9 and the discussion preceding it implies that F is a
gradient field if and only if rotF = 0.
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