Fourier series

A. Complex numbers — a recapitulation

Let a,b € R and z = a+ ib € C. The complex number Z := a — ib is called
the complex conjugate of z. The absolute value |z| is defined as

1z = V2Z=Va2 + b (>0).

We call a = Re(z) the real part of z and b = Im(2) the imaginary part of

z. We have ] 1
Re(z)zi(z—l—?), Im(z):2—i(z—2)

Note: z; = z3 <= Re(z1) = Re(22) and Im(z7) = Im(22).

The following calculation rules hold for conjugation and for taking the abso-
lute value. When z,w € C, then

|

=z, 2tw=zZ4+wW,zZ-W=2Z W,
Re(2) <[Re(z)| <z, Im(z) <[Im(2)] <[],
2] >0, |2|=0<=2=0, |zw| = |z| |w|
|z +w| <|z| + |w| (triangle inequality).

Definition: A sequence (c,)nen converges to ¢ € C, if to each € > 0 there
exists some ng € N such that

lcn —¢| <€ for all n > ny.
Recall: ¢, - ¢ <= Re(c¢,) = Re(c) and Im(c,) — Im(c).

Euler’s formula holds

oo . n
cosw +isinx = e (= Z (zx') ),
n!
n=0

since i" =1if n=4k, i"=iift n=4k+1, " = —1if n =4k + 2, and
"= —iif n =4k + 3, k € Z, and, therefore,

cosr = f: (_1)kx2k = f: (i)™ (conv. absolutely)
(2k)! (2k)! ' ’
k=0 k=0
e -1 k e -\ 2k+1
isinz = ZZ ﬁx%ﬂ = Z % (conv. absolutely).

Ed

=0 k=0



We recall the special case of the functional equation for the exponential
function
ee = @) forall 2,y € R;

in particular, e’ is a 27-periodic function, e***t27) = ¢ all 2 € R, and
eir = i,
B. Pointwise convergence of Fourier series

A basic problem of analysis consists in controlling/approximating “compli-
cated” quantities by “simple” ones:

a) Areal number z,0 <z <1, x=0,a4,a,0as,a4,..., a; €{0,...,9},
is determined by the sequence of the finite decimal fraction (x,),, =, =
0,a1,...,0p.

b) If f € C(I), a € I, one can construct the sequence of Taylor poly-

nomials (T,(f;a)), . Tu(fia)(x) = Shy Lo(z — a)¥, and try to
approximate f by this sequence of Taylor polynomials.

c) J. Fourier’s (1768 - 1830) vision was: Each continuous, 27r-periodic
function can be approximated arbitrarily accurate by the partial sums
of the nowadays called Fourier series (in particular, by trigonometric
polynomials ¢(z) := >} aj ™).

Now we want to state this more precisely.

Let the uniformly convergent trigonometric series

[ee)

(1) Z cre®™ = f(z), c€C,

be given. Since all terms of the sum are continuous and 27w-periodic, this
series defines a continuous and 27-periodic function; Notation: f € Cs,,
where

Cor ={9€ C(R,C) : g(x +27) = g(x) all z € R}.

Problem: What is the relation between f and (cx)r? How can one obtain
the coefficients (cx)r from f, and vice versa? Are the coefficients uniquely
determined?

Recall that for jump continuous functions f : [a,b] C R — C we defined

/ I / (Re f(2)) dv + i / (Im f(2)) dz



Therefore, the following definition is reasonable.

Definition. Let f : R — C be a 2m-periodic, jump continuous function,
notation: f € Sor. We call the numbers

~ 1 T .
fk.:zﬁ/f(x)e_lkmdx, kelZ,

the Fourier coefficients of f and the series

o0
Z ﬁ eikw

k=—o00

e., the sequence of the partial sums ($p,(f))n, sn(f;x) = Zzz_nﬁeik“’“
the Fourier series of f.

If f,likein (1), is given by a uniformly convergent trigonometric series, then

n 1 f S ikx —ijx S i(k—
fj:% (che )e]dx:z:ck—/ —i)»
g k=—o00 k=—
1 f . . —
= ¢, since %/ez(’“—])m dx :{ é : Z#;

In particular, if f is a trigonometric polynomial,

N
(2) f@) =3 ae™ = su(f)=fn>N
k=—N

Counterexamples show that the partial sums do not converge in general —
there exist f € Cy,, whose partial sums diverge in one point (and hence in
countably many points). L. Fejér (1880 - 1959) recognized that, though the
partial sums do not converge in the sense of Cauchy, they do converge in a
weaker sense, namely, their first arithmetic means converge.
(Recall:  If (s,), CC, 5, =5 = =521 (s —5.)

We compute the first arithmetic means of the partial sums of the Fourier
series

n—li—lkZ:OSk(f;x) - n—l—lZZ ZfJ(Z )

k=0 j= -n k=|3]

® - ZA"ZZ'J' —,:Z_n(l— ) b




Theorem 1 (Fejér’s Theorem). Let f € Sy (ie., f: R — C is 27-
periodic and jump continuous).

a) If [ is continuous at t, then

on(fit) = 2": (1— n|~k;|1) Fre™ — f(t) when n — oo.
k=—n

b) If f is continuous on [a,b] C [—m, 7|, then the convergence is uni-
form on [a,b]. In particular, if f € Coy, then

Tim [loa(f) = flloo = lim | sup_|on(fit) = ()] ] = 0.

O L gt

Corollary 1 (Uniqueness Theorem). If f,g € Cs, and ]?k = gr for all
ke€Z, then f =g.

Proof. Use the triangle inequality for the || - ||ooc-norm and the hypothesis
fr = gk to obtain

1f = 9llce < [If = on(Fllco + [lon(g) = glloc = 0 for n — oo.

O

Corollary 2 (Approximation Theorem). To each f € Cy, and each
€ > 0 there exists a trigonometric polynomial T such that

1f =Tl <.

Proof. Choose, e.g., T'= o,(f). O

Corollary 3 (Lemma of Riemann). If f € Cy,, then lim_ ﬁ =0.

Proof. To given ¢ > 0 choose n € N such that ||f —0,(f)||cc < e. Then one
obtains for |k| > n by the definition of the Fourier coefficients

—

Tl = 15 = oDl = 1(F = 0nlDil S 1IF = 0u(Plloo < &

To prove the Theorem of Fejér we need three lemmas.



Lemma 1. If f € Sy, then

)= %/ﬂf(t—s) K,(s)ds, where K,(s) = zn: (1 _ n|i|1> ks

Proof.

- |k| —ikx 7
on(fit) = Z(l_n—i—l 27r/f ke g etk
k=—n
( o |k’ ) eik(tfx) dx
= n+1

_ /f
zi/f(t—y) /ft— () dy;

t+m
here the last equality holds, because f(t—y) Kn(y) is a 2m-periodic function
in y and the integral of a periodic function, which is integrated over a full

period, does not change, if one shifts the integration interval. O
Lemma 2.
n+1 ,y=2Nr
K% = 1 n+1
(v) 2y ,Yy#2Nn, NeZ.
n—+1\ sin 2y

Proof. For y = 2N7 we have

Z 1—L =+ 1— Zk=n+1.
= n-+1 n—i—lkz1

(Note: 2%k = n(n+1). ) Now let y # 2N7, N € Z and choose
fly)=>_"__€9% in (3). Then (3) implies

j=—n

> ()= e e

k=—n k=0 j=—k

The inner sum on the right hand side is a finite geometric series. Therefore,

i(2k+1 —iy\ ( p—ik i(k+1
o~ thy Zeijy — e—z‘kyl _16 ( _ v _ (1 —e)(e~™ — ilithy)
— —e

e~y — ikt )y =ikt )y 4 iy cosky — cos(k + 1)y

2(1 — cosy) 1 —cosy

2 —2cosy




Hence
1 . cosky —cos(k + 1)y 1 1—cos(n+1)y
Kay) = g 2= 1= - -
n—i—lk: 1 —cosy n—+1 1 —cosy
and, since 1 — cosmy = 2sin? %my, m € Ny, the last display yields the
assertion. O
Lemma 3.

(i) Kn(y) >0 forall y € R.

(i) K,(y) converges uniformly to 0 on [—m, —3] U [0, 7| for each o0 (fized),
0<d<m.

(iii) f K,

Proof. (i) is obvious on account of Lemma 2. Likewise (ii), since

1 1

Kaly) < (n+1)sin®§/2

— 0, n — oo, for every fixed 9§, 0 < § < 7.

(i) & /7 Kaly)dy = > p__, (1 - n%) L [T ek dy = 1, since all terms

2w J—m
of the sum except for the term with k& = 0 vanish. O

Idea of proof of Fejér’s Theorem: In a certain sense, for small 6 > 0 and
for large n we may argue as follows:

™

nlfit) = 5o [ Kl S -ty ¥ o [ Kalw) £0 ) dy
—r ly|<o
1 . . .
~ f(t)— / K,(y)dy (since f is continuous at t)
2m

ly|<d

(423)

(ii)
~ zn/K Ydy =~ f(t).

L

Proof of Fejér's Theorem. Let ¢ > 0 be given. Note the following facts:
(a) Since f € Sy, there exists an M > 0 such that |f(y)| < M for all y.

(B) Due to the continuity of f at ¢ there exists 0 = d.; > 0 such that
|f(y) — f(t)| < § forall y, |y —t| <d. This § will now be fixed.

() 1K) < 157 forally < |yl <mandn > N;..



Thus, by Lemma 1,

(i) =10 2o [ - Ky - 5= [ 10 K dy

< 52—/ dy+— / Kn(y)dy
) §<|y|<m

() M

< g — / mdy<5 forall n > N,,.
5§|y\§7r

If fis continuous on [a,b], then f is uniformly continuous on [a,b], and the
previous arguments hold uniformly w.r.t. ¢ € [a, b]. O

C. Parseval’s formula

We introduce a scalar product and a related norm on S :

- [ ra@ e, U= G0 Fe S

then there hold the inequality of Cauchy-Schwarz (cf. Chap. V, Cor. 2.19 or
see the Appendix) and the triangle inequality, i.e.,

[(F ol < fllallgllzs 1F +glla < 1 Fll2 + [lgll2-

Theorem 2. For f € Sy,

1 = s I =F13 =D 1Rl

k=—n

where s, (f;x) => 0 ﬁ e’ n € N, denote the partial sums of the Fou-
rier series. In particular, one gets the following results:

(a) If f is a trigonometric polynomial of degree N, i.e., f(x) = ZkN:_N ﬁeikx,
then, by (2),

115 = Z Ifel>  for every n > N.

k=—n



(b) If f € Sor, then

Z Fl < 17112, (Bessel’s inequality).

k=—00
Proof. Let g := s,(f). Then g, = ﬁ for |k| < n, and even

(f.9) = / Z Frethr dg = Z i _/f ) e~ g

k=—n k=—n
= kz Rh=3% %/g(:v) e dr = (g,9) .

k=—n

™

—T

Hence

0 < /|f —g@)Pdr={f—g.f—g)
= <ff> <f9> (9. f)+(9,9)

= ||f||2—2Z |fel? + Z =013 = 17

k=—n k=—n k=—n
In particular,
n
Y IAP<IfI3  forall neN,
k=—n

yielding Bessel’s inequality as n — oo. O

The next result shows that the sequence of partial sums of the Fourier series
of f converges to f in the weaker sense of integral mean squares. Here “wea-
ker sense” means that uniform convergence in Cs,; implies “convergence of
integral mean squares”.



Theorem 3. (Formulas of Parseval and of Plancherel) If f € S, then

2

ggousn<f>—fu§:glm—/] > Aot =

oo 27T

und

0 R 1 A
S IRE =5 [ 1@ = If 1.

k=—o00

Proof. The triangle inequality (w.r.t. the integral norm || - ||2) yields

@) M = sa(H) 2 < Nf = o) Ml2 + lon(f) = sn(f) [l2 = L+ L.

Let £ > 0 be given. By Cor. 1.7 and 1.8, Chap. V, f is bounded, say || f|le <
My, and by Lemma 1 and 3 ||o,(f)]|cc < Mj. Further, by Cor. 1.8, Chap.
V, f has at most countably many points of discontinuity. Let the first such
point be the center of an open interval with length (e/M;)?271, the j-th
be the center of an open interval with length (¢/M;)*277, j € N. Denote
the union of all these intervals by FE. Then, by the triangle inequality (w.r.t.
|| - [[o-norm) and the notation E°:= [—m, 7|\ E,

6 vzt (e ) ([ g lotho) = stopa)

=1 e reke

By Part (b) of Fejér’s Theorem, the last integrand becomes less than /+/27
for all n > Ny, hence I} <2 +¢, n > Nj.

Since o,(f) und s,(f) are trigonometric polynomials of degree less or equal
n, we obtain by Theorem 2 (a)

2

- & Gy

6)  lon(f) —sa(f) I3 = H _i 1

for all n € N. Since Y > |fAk\2 converges by Bessel’s inequality, choose
N7 € N so large that

k ~
Z <n‘+‘1> |fel? < Z |fel? < /2 for all n > Nj.
N<[|k|<n k|>N

So N; € N is fixed. Now choose N, € N, Ny > Ny, so big that
e e
(n+1)> 2((f, f) +1)

for all k, |k| < Ny, all n > N,.
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In view of (6) the last two estimates and Bessel’s inequality show that for all
n > max(Ny, Na) we have

Z |fil?+ Z <n|L+|1>2’ﬁc]2 <e, n2>max(No, Ng),

N<|k|<n

b S ST

and, therefore, on account of (4), lim, . ||f — sn(f) |2 = 0.

The final statement, i.c., 32°° | fe|2 = [|f||2, is an casy consequence of the
first part and of Theorem 2 when n — oo. O

7T2

[o.¢] 2 [o.¢]
T
Application: 2j4+1)2=—:; i ticul k2 =—.
pplication E (27 + 1) g7 in particular E G

§=0 k=1

Proof. Consider

-1 ,—7<2r<0 ~ 1 0 , keven
f(x>_{ 1 ,0<z<m — f’“_—{ , .

Theorem 3 yields

1/ x
1= — 2de =
o J WP dr= 3 =3
r k ungerade j=
or equivalently 77 (2] 4+ 1)7* = 7?/8 . Defining
Sl 1 =1 2 1
S=) 3= : + =—+-5,
I R Mo L.

this equation in S admits the unique solution S = 72/6.

Lemma 4. Let f € Uy, be piecewise contmuously dzﬁer@ntmble i.e., f' has
at most finitely many jump discontinuities. Then [f’],C =ik fk for all k erl.

Proof: First assume that f’ has only one jump discontinuity, say at xg €
[—7, m] . Then, integration by parts yields

27r[f/7]k = <7_+/W)f’(x)e_i’“”dx

- zo+
™

- [ f@) ket ar,

—T

U et

o

= e

—T
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The boundary terms vanish since f, e=%** € Oy, . This proves the assertion
in the case of just one jump discontinuity of f’. If f’ has finitely many jump
discontinuities, the previous procedure may be repeated finitely many times.

O

Theorem 5 Let f € Oy, be piecewise continuously differentiable. Then the
partial sums of the Fourier series of f converge in the supremum norm to

f, e,

fl@)= " fee™| =0.

k=—n

lim ||f — s.(f) ||ooc = lim  sup
n—oo n=0 g [—m,m]

Proof. Since f’ is piecewise continuous, [" |f(x)]*dx < oo. Then by
Theorem 3 and Lemma 4

o0

Yo URl = l+Y

k=—oc0 k#0

o [1r@lde+ (Z171)

(.
ik

1/2

IN

(T) " <o

k0

here we used the Cauchy-Schwarz inequality in the vector space

C(Z) = {(ar)r: Y lax* < o0}
k=—00
endowed with the scalar product
((ar)ns b)) = D by,
k=—00

see the Appendix. Using the Weierstrafl M-test, the sequence of partial sums

< Z ﬁ; e“‘””) is uniformly convergent to a continuous (!) function. Now
k|<n "
the Uniqueness Theorem yields the assertion. a
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D. Appendix

Lemma. Let X be a vector space over the field C (or R) with scalar product
(,-). Then the inequality of Cauchy-Schwarz

1(f, )] < (f, £)*(g, g)"/?

holds for all f,g € X. Defining ||f ||x := (f, f)'/?, the triangle inequality
1 +gllx <fllx + llgllx

holds for all f,g € X; moreover, |- | x is a norm on X.

Proof. For f =0, the inequalities are obvious. Now let f # 0, set o = (f, g)
and choose A = —a/(f, f). Then a simple calculation shows that

[\

o

0< N+, M +9) = NPIFIZ + A g)+ Mg, £+ llgll% = [lgll% — %

yielding the Cauchy-Schwarz inequality.
The triangle inequality may now be proved analogously to the triangle ine-
quality on C :

If+a9llx = (F+a.f+a)=IfIx+ 9+ @) +]glx
= [IflIx +2Re (£, 9) + llgllx < IFI% + 201 flIxllgllx + llgllx -

O



