Fourier series

A. Complex numbers – a recapitulation

Let $a, b \in \mathbb{R}$ and $z = a + ib \in \mathbb{C}$. The complex number $\overline{z} := a - ib$ is called the *complex conjugate* of z. The *absolute value* |z| is defined as

$$|z| := \sqrt{z\overline{z}} = \sqrt{a^2 + b^2} \quad (\ge 0).$$

We call $a = \operatorname{Re}(z)$ the real part of z and $b = \operatorname{Im}(z)$ the imaginary part of z. We have

$$\operatorname{Re}(z) = \frac{1}{2}(z+\overline{z}), \qquad \operatorname{Im}(z) = \frac{1}{2i}(z-\overline{z})$$

Note: $z_1 = z_2 \iff \operatorname{Re}(z_1) = \operatorname{Re}(z_2)$ and $\operatorname{Im}(z_1) = \operatorname{Im}(z_2)$.

The following calculation rules hold for conjugation and for taking the absolute value. When $z, w \in \mathbb{C}$, then

$$\overline{z} = z , \ \overline{z + w} = \overline{z} + \overline{w} , \ \overline{z \cdot w} = \overline{z} \cdot \overline{w} ,$$

$$\mathsf{Re}(z) \le |\mathsf{Re}(z)| \le |z| , \qquad \mathsf{Im}(z) \le |\mathsf{Im}(z)| \le |z| ,$$

$$|z| \ge 0 , \quad |z| = 0 \iff z = 0 , \qquad |zw| = |z| |w|$$

$$|z + w| \le |z| + |w| \qquad \text{(triangle inequality)}.$$

Definition: A sequence $(c_n)_{n \in \mathbb{N}}$ converges to $c \in \mathbb{C}$, if to each $\varepsilon > 0$ there exists some $n_0 \in \mathbb{N}$ such that

$$|c_n - c| < \varepsilon$$
 for all $n \ge n_0$.

Recall: $c_n \to c \iff \operatorname{Re}(c_n) \to \operatorname{Re}(c) \text{ and } \operatorname{Im}(c_n) \to \operatorname{Im}(c)$.

Euler's formula holds

$$\cos x + i \sin x = e^{ix} \quad (= \sum_{n=0}^{\infty} \frac{(ix)^n}{n!}),$$

since $i^n = 1$ if n = 4k, $i^n = i$ if n = 4k + 1, $i^n = -1$ if n = 4k + 2, and $i^n = -i$ if n = 4k + 3, $k \in \mathbb{Z}$, and, therefore,

$$\cos x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k} = \sum_{k=0}^{\infty} \frac{(ix)^{2k}}{(2k)!}$$
(conv. absolutely),
$$i \sin x = i \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1} = \sum_{k=0}^{\infty} \frac{(ix)^{2k+1}}{(2k+1)!}$$
(conv. absolutely).

We recall the special case of the functional equation for the exponential function

$$e^{ix}e^{iy} = e^{i(x+y)}$$
 for all $x, y \in \mathbb{R}$;

in particular, e^{ix} is a 2π -periodic function, $e^{i(x+2\pi)} = e^{ix}$ all $x \in \mathbb{R}$, and $e^{ix} = e^{-ix}$.

B. Pointwise convergence of Fourier series

A basic problem of analysis consists in controlling/approximating "complicated" quantities by "simple" ones:

- a) A real number $x, 0 < x < 1, x = 0, a_1, a_2, a_3, a_4, \ldots, a_i \in \{0, \ldots, 9\}$, is determined by the sequence of the finite decimal fraction $(x_n)_n, x_n = 0, a_1, \ldots, a_n$.
- b) If $f \in C^{\infty}(I)$, $a \in I$, one can construct the sequence of Taylor polynomials $(T_n(f;a))_n$, $T_n(f;a)(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!}(x-a)^k$, and try to approximate f by this sequence of Taylor polynomials.
- c) J. Fourier's (1768 1830) vision was: Each continuous, 2π -periodic function can be approximated arbitrarily accurate by the partial sums of the nowadays called Fourier series (in particular, by trigonometric polynomials $t(x) := \sum_{k=-n}^{n} a_k e^{ikx}$).

Now we want to state this more precisely.

Let the uniformly convergent trigonometric series

(1)
$$\sum_{k=-\infty}^{\infty} c_k e^{ikx} =: f(x) , \quad c_k \in \mathbb{C} ,$$

be given. Since all terms of the sum are continuous and 2π -periodic, this series defines a continuous and 2π -periodic function; <u>Notation</u>: $f \in C_{2\pi}$, where

$$C_{2\pi} := \left\{ g \in C(\mathbb{R}, \mathbb{C}) : g(x + 2\pi) = g(x) \text{ all } x \in \mathbb{R} \right\}.$$

Problem: What is the relation between f and $(c_k)_k$? How can one obtain the coefficients $(c_k)_k$ from f, and vice versa? Are the coefficients uniquely determined?

Recall that for jump continuous functions $f:[a,b] \subset \mathbb{R} \to \mathbb{C}$ we defined

$$\int_{a}^{b} f(x) \, dx := \int_{a}^{b} (\operatorname{Re} f(x)) \, dx + i \int_{a}^{b} (\operatorname{Im} f(x)) \, dx \, dx$$

Therefore, the following definition is reasonable.

Definition. Let $f : \mathbb{R} \to \mathbb{C}$ be a 2π -periodic, jump continuous function, <u>notation</u>: $f \in S_{2\pi}$. We call the numbers

$$\widehat{f}_k := \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx , \qquad k \in \mathbb{Z} ,$$

the **Fourier coefficients** of f and the series

$$\sum_{k=-\infty}^{\infty} \widehat{f}_k \, e^{ikx} \, ,$$

i.e., the sequence of the <u>partial sums</u> $(s_n(f))_n$, $s_n(f;x) := \sum_{k=-n}^n \widehat{f}_k e^{ikx}$, the <u>Fourier series</u> of f.

If f, like in (1), is given by a uniformly convergent trigonometric series, then

$$\hat{f}_{j} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\sum_{k=-\infty}^{\infty} c_{k} e^{ikx} \right) e^{-ijx} dx = \sum_{k=-\infty}^{\infty} c_{k} \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(k-j)x} dx$$
$$= c_{j}, \qquad \text{since} \ \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(k-j)x} dx = \begin{cases} 1 & , \ k = j \\ 0 & , \ k \neq j \end{cases}.$$

In particular, if f is a trigonometric polynomial,

(2)
$$f(x) = \sum_{k=-N}^{N} c_k e^{ikx} \quad \Rightarrow \quad s_n(f) = f, \ n \ge N.$$

Counterexamples show that the partial sums do not converge in general – there exist $f \in C_{2\pi}$, whose partial sums diverge in one point (and hence in countably many points). L. Fejér (1880 - 1959) recognized that, though the partial sums do not converge in the sense of Cauchy, they do converge in a weaker sense, namely, their first arithmetic means converge. (Recall: If $(s_n)_n \subset \mathbb{C}$, $s_n \to s \Rightarrow \frac{1}{n+1} \sum_{k=0}^n s_k \to s$.)

We compute the first arithmetic means of the partial sums of the Fourier series

$$\frac{1}{n+1}\sum_{k=0}^{n}s_{k}(f;x) = \frac{1}{n+1}\sum_{k=0}^{n}\sum_{j=-k}^{k}\widehat{f}_{j}e^{ijx} = \frac{1}{n+1}\sum_{j=-n}^{n}\widehat{f}_{j}\left(\sum_{k=|j|}^{n}1\right)e^{ijx}$$

$$(3) = \sum_{j=-n}^{n}\widehat{f}_{j}\frac{n+1-|j|}{n+1}e^{ijx} = \sum_{j=-n}^{n}\left(1-\frac{|j|}{n+1}\right)\widehat{f}_{j}e^{ijx}.$$

a) If f is continuous at t, then

$$\sigma_n(f;t) := \sum_{k=-n}^n \left(1 - \frac{|k|}{n+1}\right) \widehat{f}_k e^{ikt} \to f(t) \quad when \ n \to \infty.$$

b) If f is continuous on $[a,b] \subseteq [-\pi,\pi]$, then the convergence is uniform on [a,b]. In particular, if $f \in C_{2\pi}$, then

$$\lim_{n \to \infty} \|\sigma_n(f) - f\|_{\infty} := \lim_{n \to \infty} \left[\sup_{-\pi \le t \le \pi} |\sigma_n(f;t) - f(t)| \right] = 0.$$

Corollary 1 (Uniqueness Theorem). If $f, g \in C_{2\pi}$ and $\hat{f}_k = \hat{g}_k$ for all $k \in \mathbb{Z}$, then f = g.

Proof. Use the triangle inequality for the $\|\cdot\|_{\infty}$ -norm and the hypothesis $\widehat{f}_k = \widehat{g}_k$ to obtain

$$||f - g||_{\infty} \le ||f - \sigma_n(f)||_{\infty} + ||\sigma_n(g) - g||_{\infty} \to 0 \text{ for } n \to \infty.$$

Corollary 2 (Approximation Theorem). To each $f \in C_{2\pi}$ and each $\varepsilon > 0$ there exists a trigonometric polynomial T such that

$$\|f - T\|_{\infty} < \varepsilon$$

Proof. Choose, e.g., $T = \sigma_n(f)$.

Corollary 3 (Lemma of Riemann). If $f \in C_{2\pi}$, then $\lim_{|k|\to\infty} \widehat{f}_k = 0$.

Proof. To given $\varepsilon > 0$ choose $n \in \mathbb{N}$ such that $||f - \sigma_n(f)||_{\infty} < \varepsilon$. Then one obtains for |k| > n by the definition of the Fourier coefficients

$$|\widehat{f_k}| = |\widehat{f_k} - \widehat{\sigma_n(f)}_k| = |(\widehat{f - \sigma_n(f)})_k| \le ||f - \sigma_n(f)||_{\infty} < \varepsilon.$$

To prove the Theorem of Fejér we need three lemmas.

Lemma 1. If $f \in S_{2\pi}$, then

$$\sigma_n(f;t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t-s) K_n(s) \, ds, \quad \text{where } K_n(s) = \sum_{k=-n}^n \left(1 - \frac{|k|}{n+1}\right) \, e^{iks} \, .$$

Proof.

$$\sigma_n(f;t) = \sum_{k=-n}^n \left(1 - \frac{|k|}{n+1}\right) \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx e^{ikt}$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \sum_{k=-n}^n \left(1 - \frac{|k|}{n+1}\right) e^{ik(t-x)} dx$$
$$= \frac{1}{2\pi} \int_{t-\pi}^{t+\pi} f(t-y) K_n(y) dy = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t-y) K_n(y) dy;$$

here the last equality holds, because $f(t-y) K_n(y)$ is a 2π -periodic function in y and the integral of a periodic function, which is integrated over a full period, does not change, if one shifts the integration interval. \Box

Lemma 2.

$$K_n(y) = \begin{cases} n+1 & , \ y = 2N\pi \\ \frac{1}{n+1} \left(\frac{\sin\frac{n+1}{2}y}{\sin\frac{1}{2}y}\right)^2 & , \ y \neq 2N\pi \ , \ N \in \mathbb{Z} \ . \end{cases}$$

Proof. For $y = 2N\pi$ we have

$$\sum_{k=-n}^{n} \left(1 - \frac{|k|}{n+1} \right) = 2n + 1 - \frac{2}{n+1} \sum_{k=1}^{n} k = n+1.$$

(Note: $2\sum_{k=1}^{n} k = n(n+1)$.) Now let $y \neq 2N\pi$, $N \in \mathbb{Z}$ and choose $f(y) = \sum_{j=-n}^{n} e^{ijy}$ in (3). Then (3) implies

$$\sum_{k=-n}^{n} \left(1 - \frac{|k|}{n+1}\right) e^{iky} = \frac{1}{n+1} \sum_{k=0}^{n} \sum_{j=-k}^{k} e^{ijy} = K_n(y) \,.$$

The inner sum on the right hand side is a finite geometric series. Therefore,

$$\begin{aligned} e^{-iky} \sum_{j=0}^{2k} e^{ijy} &= e^{-iky} \frac{1 - e^{i(2k+1)y}}{1 - e^{iy}} = \frac{(1 - e^{-iy})(e^{-iky} - e^{i(k+1)y})}{2 - 2\cos y} \\ &= \frac{e^{-iky} - e^{i(k+1)y} - e^{-i(k+1)y} + e^{iky}}{2(1 - \cos y)} = \frac{\cos ky - \cos(k+1)y}{1 - \cos y}. \end{aligned}$$

Hence

$$K_n(y) = \frac{1}{n+1} \sum_{k=0}^n \frac{\cos ky - \cos(k+1)y}{1 - \cos y} = \frac{1}{n+1} \frac{1 - \cos(n+1)y}{1 - \cos y}$$

and, since $1 - \cos my = 2 \sin^2 \frac{1}{2}my$, $m \in \mathbb{N}_0$, the last display yields the assertion.

Lemma 3.

- (i) $K_n(y) \ge 0$ for all $y \in \mathbb{R}$.
- (ii) $K_n(y)$ converges uniformly to 0 on $[-\pi, -\delta] \cup [\delta, \pi]$ for each δ (fixed), $0 < \delta < \pi$.
- (iii) $\frac{1}{2\pi} \int_{-\pi}^{\pi} K_n(y) \, dy = 1.$

Proof. (i) is obvious on account of Lemma 2. Likewise (ii), since

$$K_n(y) \le \frac{1}{(n+1)} \frac{1}{\sin^2 \delta/2} \to 0, \ n \to \infty, \text{ for every fixed } \delta, \ 0 < \delta < \pi.$$

(iii) $\frac{1}{2\pi} \int_{-\pi}^{\pi} K_n(y) dy = \sum_{k=-n}^n \left(1 - \frac{|k|}{n+1}\right) \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{iky} dy = 1$, since all terms of the sum except for the term with k = 0 vanish.

Idea of proof of Fejér's Theorem: In a certain sense, for small $\delta > 0$ and for large *n* we may argue as follows:

$$\sigma_n(f;t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} K_n(y) f(t-y) \, dy \stackrel{(ii)}{\approx} \frac{1}{2\pi} \int_{|y| \le \delta} K_n(y) f(t-y) \, dy$$
$$\approx f(t) \frac{1}{2\pi} \int_{|y| \le \delta} K_n(y) \, dy \quad \text{(since } f \text{ is continuous at } t)$$
$$\stackrel{(ii)}{\approx} f(t) \frac{1}{2\pi} \int_{-\pi}^{\pi} K_n(y) \, dy \stackrel{(iii)}{\approx} f(t) \, .$$

Proof of Fejér's Theorem. Let $\varepsilon > 0$ be given. Note the following facts:

- (α) Since $f \in S_{2\pi}$, there exists an M > 0 such that $|f(y)| \leq M$ for all y.
- (β) Due to the continuity of f at t there exists $\delta = \delta_{\varepsilon,t} > 0$ such that $|f(y) f(t)| < \frac{\varepsilon}{2}$ for all $y, |y t| < \delta$. This δ will now be fixed.
- $(\gamma) |K_n(y)| \leq \frac{\varepsilon}{4M}$ for all $y, \delta \leq |y| \leq \pi$ and $n \geq N_{t,\varepsilon}$.

Thus, by Lemma 1,

$$\begin{aligned} |\sigma_n(f;t) - f(t)| &\stackrel{(iii)}{=} \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t-y) K_n(y) \, dy - \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) K_n(y) \, dy \right| \\ &\leq \frac{1}{2\pi} \left(\int_{|y| \le \delta} + \int_{\delta \le |y| \le \pi} \right) \left| f(t-y) - f(t) \right| K_n(y) \, dy \\ &\stackrel{(\beta,\alpha)}{\leq} \frac{\varepsilon}{2} \frac{1}{2\pi} \int_{-\delta}^{\delta} K_n(y) \, dy + \frac{2M}{2\pi} \int_{\delta \le |y| \le \pi} K_n(y) \, dy \\ &\stackrel{(\gamma)}{\leq} \frac{\varepsilon}{2} + \frac{M}{\pi} \int_{\delta \le |y| \le \pi} \frac{\varepsilon}{4M} \, dy < \varepsilon \quad \text{for all } n \ge N_{\varepsilon,t} \, . \end{aligned}$$

If f is continuous on [a, b], then f is uniformly continuous on [a, b], and the previous arguments hold uniformly w.r.t. $t \in [a, b]$.

C. Parseval's formula

We introduce a scalar product and a related norm on $S_{2\pi}$:

$$\langle f,g\rangle := \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} dx, \quad \|f\|_2 := \langle f,f\rangle^{1/2}, \quad f,g \in \mathcal{S}_{2\pi}.$$

then there hold the inequality of Cauchy-Schwarz (cf. Chap. V, Cor. 2.19 or see the Appendix) and the triangle inequality, i.e.,

$$|\langle f,g\rangle| \le ||f||_2 ||g||_2$$
, $||f+g||_2 \le ||f||_2 + ||g||_2$.

Theorem 2. For $f \in S_{2\pi}$

$$||f - s_n(f)||_2^2 = ||f||_2^2 - \sum_{k=-n}^n |\widehat{f}_k|^2,$$

where $s_n(f;x) = \sum_{k=-n}^n \widehat{f}_k e^{ikx}$, $n \in \mathbb{N}$, denote the partial sums of the Fourier series. In particular, one gets the following results:

(a) If f is a trigonometric polynomial of degree N, i.e., $f(x) = \sum_{k=-N}^{N} \widehat{f}_k e^{ikx}$, then, by (2),

$$||f||_2^2 = \sum_{k=-n}^n |\widehat{f}_k|^2 \quad \text{for every } n \ge N.$$

(b) If
$$f \in S_{2\pi}$$
, then

$$\sum_{k=-\infty}^{\infty} |\widehat{f}_k|^2 \le ||f||_2^2, \qquad (Bessel's inequality).$$

Proof. Let $g := s_n(f)$. Then $\widehat{g}_k = \widehat{f}_k$ for $|k| \le n$, and even

$$\begin{aligned} \langle f,g\rangle &= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \overline{\sum_{k=-n}^{n} \widehat{f_k} e^{ikx}} \, dx = \sum_{k=-n}^{n} \overline{\widehat{f_k}} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} \, dx \\ &= \sum_{k=-n}^{n} \overline{\widehat{f_k}} \, \widehat{f_k} = \sum_{k=-n}^{n} \overline{\widehat{g_k}} \frac{1}{2\pi} \int_{-\pi}^{\pi} g(x) e^{-ikx} \, dx = \langle g,g\rangle \,. \end{aligned}$$

Hence

$$0 \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x) - g(x)|^2 dx = \langle f - g, f - g \rangle$$

= $\langle f, f \rangle - \langle f, g \rangle - \langle g, f \rangle + \langle g, g \rangle$
= $||f||_2^2 - 2 \sum_{k=-n}^n |\widehat{f}_k|^2 + \sum_{k=-n}^n |\widehat{f}_k|^2 = ||f||_2^2 - \sum_{k=-n}^n |\widehat{f}_k|^2.$

In particular,

$$\sum_{k=-n}^{n} |\widehat{f}_k|^2 \le \|f\|_2^2 \quad \text{for all } n \in \mathbb{N},$$

yielding Bessel's inequality as $n \to \infty$.

The next result shows that the sequence of partial sums of the Fourier series of f converges to f in the weaker sense of *integral mean squares*. Here "weaker sense" means that uniform convergence in $C_{2\pi}$ implies "convergence of integral mean squares".

Theorem 3. (Formulas of Parseval and of Plancherel) If $f \in S_{2\pi}$ then

$$\lim_{n \to \infty} \|s_n(f) - f\|_2^2 \equiv \lim_{n \to \infty} \frac{1}{2\pi} \int_{-\pi}^{\pi} \Big| \sum_{k=-n}^n \widehat{f}_k e^{ikx} - f(x) \Big|^2 dx = 0$$

und

$$\sum_{k=-\infty}^{\infty} |\widehat{f}_k|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 \, dx = \|f\|_2^2 \, dx.$$

Proof. The triangle inequality (w.r.t. the integral norm $\|\cdot\|_2$) yields

(4)
$$||f - s_n(f)||_2 \le ||f - \sigma_n(f)||_2 + ||\sigma_n(f) - s_n(f)||_2 =: I_1 + I_2.$$

Let $\varepsilon > 0$ be given. By Cor. 1.7 and 1.8, Chap. V, f is bounded, say $||f||_{\infty} \leq M_f$, and by Lemma 1 and 3 $||\sigma_n(f)||_{\infty} \leq M_f$. Further, by Cor. 1.8, Chap. V, f has at most countably many points of discontinuity. Let the first such point be the center of an open interval with length $(\varepsilon/M_f)^2 2^{-1}$, the *j*-th be the center of an open interval with length $(\varepsilon/M_f)^2 2^{-j}$, $j \in \mathbb{N}$. Denote the union of all these intervals by E. Then, by the triangle inequality (w.r.t. $|| \cdot ||_2$ -norm) and the notation $E^c := [-\pi, \pi] \setminus E$,

(5)
$$I_1 \le 2M_f \Big(\sum_{j=1}^{\infty} (\varepsilon/M_f)^2 2^{-j} \Big)^{1/2} + \Big(\int_{E^c} \sup_{x \in E^c} |\sigma_n(f, x) - f(x)|^2 dx \Big)^{1/2}$$

By Part (b) of Fejér's Theorem, the last integrand becomes less than $\varepsilon/\sqrt{2\pi}$ for all $n \ge N_0$, hence $I_1 \le 2\varepsilon + \varepsilon$, $n \ge N_0$.

Since $\sigma_n(f)$ und $s_n(f)$ are trigonometric polynomials of degree less or equal n, we obtain by Theorem 2 (a)

(6)
$$\|\sigma_n(f) - s_n(f)\|_2^2 = \left\|\sum_{k=-n}^n \frac{|k|}{n+1} \widehat{f}_k e^{ikx}\right\|_2^2 = \sum_{k=-n}^n \left(\frac{|k|}{n+1}\right)^2 |\widehat{f}_k|^2$$

for all $n \in \mathbb{N}$. Since $\sum_{k=-\infty}^{\infty} |\widehat{f}_k|^2$ converges by Bessel's inequality, choose $N_1 \in \mathbb{N}$ so large that

$$\sum_{N < |k| \le n} \left(\frac{|k|}{n+1}\right)^2 |\widehat{f}_k|^2 \le \sum_{|k| > N} |\widehat{f}_k|^2 < \varepsilon/2 \quad \text{for all } n > N_1.$$

So $N_1 \in \mathbb{N}$ is fixed. Now choose $N_2 \in \mathbb{N}$, $N_2 > N_1$, so big that

$$\frac{|k|^2}{(n+1)^2} < \frac{\varepsilon}{2(\langle f, f \rangle + 1)} \quad \text{for all } k, \, |k| \le N_1, \, \text{all } n \ge N_2.$$

In view of (6) the last two estimates and Bessel's inequality show that for all $n \ge \max(N_0, N_2)$ we have

$$I_2 \le \frac{\varepsilon}{2(\langle f, f \rangle + 1)} \sum_{k=-N}^{N} |\widehat{f}_k|^2 + \sum_{N < |k| \le n} \left(\frac{|k|}{n+1}\right)^2 |\widehat{f}_k|^2 < \varepsilon, \quad n \ge \max(N_0, N_2),$$

and, therefore, on account of (4), $\lim_{n\to\infty} ||f - s_n(f)||_2 = 0$. The final statement, i.e., $\sum_{k=-\infty}^{\infty} |\hat{f}_k|^2 = ||f||_2^2$, is an easy consequence of the first part and of Theorem 2 when $n \to \infty$.

Application:
$$\sum_{j=0}^{\infty} (2j+1)^{-2} = \frac{\pi^2}{8}$$
; in particular $\sum_{k=1}^{\infty} k^{-2} = \frac{\pi^2}{6}$.

Proof. Consider

$$f(x) = \begin{cases} -1 & , -\pi \le x < 0 \\ 1 & , 0 \le x < \pi \end{cases} \implies \widehat{f}_k = \frac{1}{\pi i k} \begin{cases} 0 & , k \text{ even} \\ 2 & , k \text{ odd} \end{cases}$$

Theorem 3 yields

$$1 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 \, dx = \sum_{k \text{ ungerade}} \frac{4}{\pi^2 k^2} = \sum_{j=0}^{\infty} \frac{8}{\pi^2 (2j+1)^2}$$

or equivalently $\sum_{j=0}^{\infty} (2j+1)^{-2} = \pi^2/8$. Defining

$$S := \sum_{k=1}^{\infty} \frac{1}{k^2} = \sum_{j=0}^{\infty} \frac{1}{(2j+1)^2} + \sum_{j=1}^{\infty} \frac{1}{(2j)^2} = \frac{\pi^2}{8} + \frac{1}{4}S,$$

this equation in S admits the unique solution $S = \pi^2/6$.

Lemma 4. Let $f \in C_{2\pi}$ be piecewise continuously differentiable, i.e., f' has at most finitely many jump discontinuities. Then $[\widehat{f'}]_k = ik \widehat{f}_k$ for all $k \in \mathbb{Z}$.

Proof: First assume that f' has only one jump discontinuity, say at $x_0 \in [-\pi, \pi]$. Then, integration by parts yields

$$2\pi \, \widehat{[f']}_k = \left(\int_{-\pi}^{x_0 -} + \int_{x_0 +}^{\pi} \right) f'(x) \, e^{-ikx} \, dx$$

= $f(x) e^{-ikx} \Big|_{-\pi}^{x_0} + f(x) e^{-ikx} \Big|_{x_0}^{\pi} - \int_{-\pi}^{\pi} f(x) \, (-ik) \, e^{-ikx} \, dx$

The boundary terms vanish since $f, e^{-ikx} \in C_{2\pi}$. This proves the assertion in the case of just one jump discontinuity of f'. If f' has finitely many jump discontinuities, the previous procedure may be repeated finitely many times.

Theorem 5 Let $f \in C_{2\pi}$ be piecewise continuously differentiable. Then the partial sums of the Fourier series of f converge in the supremum norm to f, i.e.,

$$\lim_{n \to \infty} \|f - s_n(f)\|_{\infty} \equiv \lim_{n \to \infty} \sup_{x \in [-\pi,\pi]} \left| f(x) - \sum_{k=-n}^n \widehat{f}_k e^{ikx} \right| = 0.$$

Proof. Since f' is piecewise continuous, $\int_{-\pi}^{\pi}|f'(x)|^2\,dx<\infty$. Then by Theorem 3 and Lemma 4

$$\begin{split} \sum_{k=-\infty}^{\infty} |\widehat{f_k}| &= |\widehat{f_0}| + \sum_{k \neq 0} \left| \frac{|\widehat{f'}]_k}{ik} \right| \\ &\leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)| \, dx + \Big(\sum_k |\widehat{[f']}_k|^2 \Big)^{1/2} \Big(\sum_{k \neq 0} k^{-2} \Big)^{1/2} < \infty; \end{split}$$

here we used the Cauchy-Schwarz inequality in the vector space

$$\ell^2(\mathbb{Z}) = \{(a_k)_k : \sum_{k=-\infty}^{\infty} |a_k|^2 < \infty\}$$

endowed with the scalar product

$$\langle (a_k)_k, (b_k)_k \rangle_{\ell^2} := \sum_{k=-\infty}^{\infty} a_k \, \overline{b_k} \, ,$$

see the Appendix. Using the Weierstraß M-test, the sequence of partial sums $\left(\sum_{|k|\leq n} \hat{f}_k e^{ikx}\right)_n$ is uniformly convergent to a continuous (!) function. Now the Uniqueness Theorem yields the assertion.

D. Appendix

Lemma. Let X be a vector space over the field \mathbb{C} (or \mathbb{R}) with scalar product $\langle \cdot, \cdot \rangle$. Then the inequality of Cauchy-Schwarz

$$|\langle f,g\rangle| \leq \langle f,f\rangle^{1/2} \langle g,g\rangle^{1/2}$$

holds for all $f, g \in X$. Defining $||f||_X := \langle f, f \rangle^{1/2}$, the triangle inequality

$$||f + g||_X \le ||f||_X + ||g||_X$$

holds for all $f, g \in X$; moreover, $\|\cdot\|_X$ is a norm on X.

Proof. For f = 0, the inequalities are obvious. Now let $f \neq 0$, set $\alpha = \langle f, g \rangle$ and choose $\lambda = -\overline{\alpha}/\langle f, f \rangle$. Then a simple calculation shows that

$$0 \leq \langle \lambda f + g, \lambda f + g \rangle = |\lambda|^2 \|f\|_X^2 + \lambda \langle f, g \rangle + \overline{\lambda} \langle g, f \rangle + \|g\|_X^2 = \|g\|_X^2 - \frac{|\alpha|^2}{\|f\|_X^2} \,,$$

yielding the Cauchy-Schwarz inequality.

The triangle inequality may now be proved analogously to the triangle inequality on $\mathbb C\,$:

$$\begin{split} \|f+g\|_X^2 &= \langle f+g, f+g \rangle = \|f\|_X^2 + \langle f,g \rangle + \langle g,f \rangle + \|g\|_X^2 \\ &= \|f\|_X^2 + 2\operatorname{\mathsf{Re}}\left(\langle f,g \rangle\right) + \|g\|_X^2 \le \|f\|_X^2 + 2\|f\|_X \|g\|_X + \|g\|_X^2 \,. \end{split}$$

	-	-		
L				
L				
L	_	_	л	