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Fourier series

A. Complex numbers – a recapitulation

Let a, b ∈ R and z = a + ib ∈ C. The complex number z := a− ib is called
the complex conjugate of z. The absolute value |z| is defined as

|z| :=
√

zz =
√

a2 + b2 (≥ 0).

We call a = Re (z) the real part of z and b = Im (z) the imaginary part of
z. We have

Re (z) =
1

2
(z + z) , Im (z) =

1

2i
(z − z)

Note: z1 = z2 ⇐⇒ Re (z1) = Re (z2) and Im (z1) = Im (z2).

The following calculation rules hold for conjugation and for taking the abso-
lute value. When z, w ∈ C, then

z = z , z + w = z + w , z · w = z · w ,

Re (z) ≤ |Re (z)| ≤ |z| , Im (z) ≤ |Im (z)| ≤ |z| ,

|z| ≥ 0 , |z| = 0 ⇐⇒ z = 0 , |zw| = |z| |w|

|z + w| ≤ |z|+ |w| (triangle inequality).

Definition: A sequence (cn)n∈N converges to c ∈ C, if to each ε > 0 there
exists some n0 ∈ N such that

|cn − c| < ε for all n ≥ n0.

Recall: cn → c ⇐⇒ Re (cn) → Re (c) and Im (cn) → Im (c) .

Euler’s formula holds

cos x + i sin x = eix (=
∞∑

n=0

(ix)n

n!
) ,

since in = 1 if n = 4k, in = i if n = 4k + 1, in = −1 if n = 4k + 2, and
in = −i if n = 4k + 3, k ∈ Z, and, therefore,

cos x =
∞∑

k=0

(−1)k

(2k)!
x2k =

∞∑
k=0

(ix)2k

(2k)!
(conv. absolutely),

i sin x = i

∞∑
k=0

(−1)k

(2k + 1)!
x2k+1 =

∞∑
k=0

(ix)2k+1

(2k + 1)!
(conv. absolutely).
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We recall the special case of the functional equation for the exponential
function

eixeiy = ei(x+y) for all x, y ∈ R;

in particular, eix is a 2π-periodic function, ei(x+2π) = eix all x ∈ R, and
eix = e−ix.

B. Pointwise convergence of Fourier series

A basic problem of analysis consists in controlling/approximating “compli-
cated” quantities by “simple” ones:

a) A real number x , 0 < x < 1 , x = 0, a1, a2, a3, a4, . . . , ai ∈ {0, . . . , 9} ,
is determined by the sequence of the finite decimal fraction (xn)n , xn =
0, a1, . . . , an.

b) If f ∈ C∞(I), a ∈ I, one can construct the sequence of Taylor poly-

nomials (Tn(f ; a))n , Tn(f ; a)(x) =
∑n

k=0
f (k)(a)

k!
(x − a)k, and try to

approximate f by this sequence of Taylor polynomials.

c) J. Fourier’s (1768 - 1830) vision was: Each continuous, 2π-periodic
function can be approximated arbitrarily accurate by the partial sums
of the nowadays called Fourier series (in particular, by trigonometric
polynomials t(x) :=

∑n
k=−n ak eikx).

Now we want to state this more precisely.

Let the uniformly convergent trigonometric series

(1)
∞∑

k=−∞

ck eikx =: f(x) , ck ∈ C ,

be given. Since all terms of the sum are continuous and 2π-periodic, this
series defines a continuous and 2π-periodic function; Notation: f ∈ C2π ,
where

C2π := {g ∈ C(R, C) : g(x + 2π) = g(x) all x ∈ R} .

Problem: What is the relation between f and (ck)k? How can one obtain
the coefficients (ck)k from f , and vice versa? Are the coefficients uniquely
determined?

Recall that for jump continuous functions f : [a, b] ⊂ R → C we defined

b∫
a

f(x) dx :=

b∫
a

(Re f(x)) dx + i

b∫
a

(Im f(x)) dx .
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Therefore, the following definition is reasonable.

Definition. Let f : R → C be a 2π-periodic, jump continuous function,
notation: f ∈ S2π. We call the numbers

f̂k :=
1

2π

π∫
−π

f(x) e−ikx dx , k ∈ Z ,

the Fourier coefficients of f and the series
∞∑

k=−∞

f̂k eikx ,

i.e., the sequence of the partial sums (sn(f))n , sn(f ; x) :=
∑n

k=−n f̂k eikx,
the Fourier series of f .

If f , like in (1), is given by a uniformly convergent trigonometric series, then

f̂j =
1

2π

π∫
−π

(
∞∑

k=−∞

ck eikx

)
e−ijx dx =

∞∑
k=−∞

ck
1

2π

π∫
−π

ei(k−j)x dx

= cj , since
1

2π

π∫
−π

ei(k−j)x dx =

{
1 , k = j
0 , k 6= j

.

In particular, if f is a trigonometric polynomial,

(2) f(x) =
N∑

k=−N

ck eikx ⇒ sn(f) = f, n ≥ N.

Counterexamples show that the partial sums do not converge in general –
there exist f ∈ C2π, whose partial sums diverge in one point (and hence in
countably many points). L. Fejér (1880 - 1959) recognized that, though the
partial sums do not converge in the sense of Cauchy, they do converge in a
weaker sense, namely, their first arithmetic means converge.
(Recall: If (sn)n ⊂ C, sn → s ⇒ 1

n+1

∑n
k=0 sk → s.)

We compute the first arithmetic means of the partial sums of the Fourier
series

1

n + 1

n∑
k=0

sk(f ; x) =
1

n + 1

n∑
k=0

k∑
j=−k

f̂j eijx =
1

n + 1

n∑
j=−n

f̂j

( n∑
k=|j|

1
)

eijx

=
n∑

j=−n

f̂j
n + 1− |j|

n + 1
eijx =

n∑
j=−n

(
1− |j|

n + 1

)
f̂j eijx .(3)
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Theorem 1 (Fejér’s Theorem). Let f ∈ S2π (i.e., f : R → C is 2π-
periodic and jump continuous).

a) If f is continuous at t, then

σn(f ; t) :=
n∑

k=−n

(
1− |k|

n + 1

)
f̂k eikt → f(t) when n →∞ .

b) If f is continuous on [a, b] ⊆ [−π, π] , then the convergence is uni-
form on [a, b]. In particular, if f ∈ C2π, then

lim
n→∞

‖σn(f)− f‖∞ := lim
n→∞

[
sup

−π≤t≤π
|σn(f ; t)− f(t)|

]
= 0 .

Corollary 1 (Uniqueness Theorem). If f, g ∈ C2π and f̂k = ĝk for all
k ∈ Z, then f = g.

Proof. Use the triangle inequality for the ‖ · ‖∞-norm and the hypothesis

f̂k = ĝk to obtain

‖f − g‖∞ ≤ ‖f − σn(f)‖∞ + ‖σn(g)− g‖∞ → 0 for n →∞.

2

Corollary 2 (Approximation Theorem). To each f ∈ C2π and each
ε > 0 there exists a trigonometric polynomial T such that

‖f − T‖∞ < ε .

Proof. Choose, e.g., T = σn(f). 2

Corollary 3 (Lemma of Riemann). If f ∈ C2π, then lim|k|→∞ f̂k = 0.

Proof. To given ε > 0 choose n ∈ N such that ‖f − σn(f)‖∞ < ε. Then one
obtains for |k| > n by the definition of the Fourier coefficients

|f̂k| = |f̂k − σ̂n(f)k| = | ̂(f − σn(f))k| ≤ ‖f − σn(f)‖∞ < ε.

2

To prove the Theorem of Fejér we need three lemmas.
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Lemma 1. If f ∈ S2π, then

σn(f ; t) =
1

2π

π∫
−π

f(t− s) Kn(s) ds, where Kn(s) =
n∑

k=−n

(
1− |k|

n + 1

)
eiks .

Proof.

σn(f ; t) =
n∑

k=−n

(
1− |k|

n + 1

)
1

2π

π∫
−π

f(x) e−ikx dx eikt

=
1

2π

π∫
−π

f(x)
n∑

k=−n

(
1− |k|

n + 1

)
eik(t−x) dx

=
1

2π

t+π∫
t−π

f(t− y) Kn(y) dy =
1

2π

π∫
−π

f(t− y) Kn(y) dy ;

here the last equality holds, because f(t−y) Kn(y) is a 2π-periodic function
in y and the integral of a periodic function, which is integrated over a full
period, does not change, if one shifts the integration interval. 2

Lemma 2.

Kn(y) =


n + 1 , y = 2Nπ

1

n + 1

(
sin n+1

2
y

sin 1
2
y

)2

, y 6= 2Nπ , N ∈ Z .

Proof. For y = 2Nπ we have
n∑

k=−n

(
1− |k|

n + 1

)
= 2n + 1− 2

n + 1

n∑
k=1

k = n + 1.

(Note: 2
∑n

k=1 k = n(n + 1). ) Now let y 6= 2Nπ , N ∈ Z and choose
f(y) =

∑n
j=−n eijy in (3). Then (3) implies

n∑
k=−n

(
1− |k|

n + 1

)
eiky =

1

n + 1

n∑
k=0

k∑
j=−k

eijy = Kn(y) .

The inner sum on the right hand side is a finite geometric series. Therefore,

e−iky

2k∑
j=0

eijy = e−iky 1− ei(2k+1)y

1− eiy
=

(1− e−iy)(e−iky − ei(k+1)y)

2− 2 cos y

=
e−iky − ei(k+1)y − e−i(k+1)y + eiky

2(1− cos y)
=

cos ky − cos(k + 1)y

1− cos y
.
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Hence

Kn(y) =
1

n + 1

n∑
k=0

cos ky − cos(k + 1)y

1− cos y
=

1

n + 1

1− cos(n + 1)y

1− cos y

and, since 1 − cos my = 2 sin2 1
2
my , m ∈ N0 , the last display yields the

assertion. 2

Lemma 3.

(i) Kn(y) ≥ 0 for all y ∈ R.

(ii) Kn(y) converges uniformly to 0 on [−π,−δ] ∪ [δ, π] for each δ (fixed),
0 < δ < π.

(iii) 1
2π

∫ π

−π
Kn(y) dy = 1.

Proof. (i) is obvious on account of Lemma 2. Likewise (ii), since

Kn(y) ≤ 1

(n + 1)

1

sin2 δ/2
→ 0, n →∞, for every fixed δ, 0 < δ < π.

(iii) 1
2π

∫ π

−π
Kn(y) dy =

∑n
k=−n

(
1− |k|

n+1

)
1
2π

∫ π

−π
eiky dy = 1, since all terms

of the sum except for the term with k = 0 vanish. 2

Idea of proof of Fejér’s Theorem: In a certain sense, for small δ > 0 and
for large n we may argue as follows:

σn(f ; t) =
1

2π

π∫
−π

Kn(y) f(t− y) dy
(ii)
≈ 1

2π

∫
|y|≤δ

Kn(y) f(t− y) dy

≈ f(t)
1

2π

∫
|y|≤δ

Kn(y) dy (since f is continuous at t)

(ii)
≈ f(t)

1

2π

π∫
−π

Kn(y) dy
(iii)
≈ f(t) .

Proof of Fejér’s Theorem. Let ε > 0 be given. Note the following facts:

(α) Since f ∈ S2π, there exists an M > 0 such that |f(y)| ≤ M for all y.

(β) Due to the continuity of f at t there exists δ = δε,t > 0 such that
|f(y)− f(t)| < ε

2
for all y , |y − t| < δ . This δ will now be fixed.

(γ) |Kn(y)| ≤ ε
4M

for all y , δ ≤ |y| ≤ π and n ≥ Nt,ε.
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Thus, by Lemma 1,

|σn(f ; t)− f(t)| (iii)
=

∣∣∣ 1

2π

π∫
−π

f(t− y) Kn(y) dy − 1

2π

π∫
−π

f(t) Kn(y) dy
∣∣∣

≤ 1

2π

 ∫
|y|≤δ

+

∫
δ≤|y|≤π

 |f(t− y)− f(t)|Kn(y) dy

(β,α)

≤ ε

2

1

2π

δ∫
−δ

Kn(y) dy +
2M

2π

∫
δ≤|y|≤π

Kn(y) dy

(γ)

≤ ε

2
+

M

π

∫
δ≤|y|≤π

ε

4M
dy < ε for all n ≥ Nε,t .

If f is continuous on [a, b], then f is uniformly continuous on [a, b], and the
previous arguments hold uniformly w.r.t. t ∈ [a, b]. 2

C. Parseval’s formula

We introduce a scalar product and a related norm on S2π :

〈f, g〉 :=
1

2π

π∫
−π

f(x) g(x) dx , ‖f‖2 := 〈f, f〉1/2, f, g ∈ S2π .

then there hold the inequality of Cauchy-Schwarz (cf. Chap. V, Cor. 2.19 or
see the Appendix) and the triangle inequality, i.e.,

|〈f, g〉| ≤ ‖f‖2‖g‖2 , ‖f + g‖2 ≤ ‖f‖2 + ‖g‖2 .

Theorem 2. For f ∈ S2π

‖f − sn(f) ‖2
2 = ‖f ‖2

2 −
n∑

k=−n

|f̂k|2 ,

where sn(f ; x) =
∑n

k=−n f̂k eikx, n ∈ N, denote the partial sums of the Fou-
rier series. In particular, one gets the following results:

(a) If f is a trigonometric polynomial of degree N, i.e., f(x) =
∑N

k=−N f̂ke
ikx,

then, by (2),

‖f ‖2
2 =

n∑
k=−n

|f̂k|2 for every n ≥ N.
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(b) If f ∈ S2π , then

∞∑
k=−∞

|f̂k|2 ≤ ‖f ‖2
2 , (Bessel’s inequality).

Proof. Let g := sn(f) . Then ĝk = f̂k for |k| ≤ n, and even

〈f, g〉 =
1

2π

π∫
−π

f(x)
n∑

k=−n

f̂k eikx dx =
n∑

k=−n

f̂k
1

2π

π∫
−π

f(x) e−ikx dx

=
n∑

k=−n

f̂k f̂k =
n∑

k=−n

ĝk
1

2π

π∫
−π

g(x) e−ikx dx = 〈g, g〉 .

Hence

0 ≤ 1

2π

π∫
−π

|f(x)− g(x)|2 dx = 〈f − g, f − g〉

= 〈f, f〉 − 〈f, g〉 − 〈g, f〉+ 〈g, g〉

= ‖f ‖2
2 − 2

n∑
k=−n

|f̂k|2 +
n∑

k=−n

|f̂k|2 = ‖f ‖2
2 −

n∑
k=−n

|f̂k|2 .

In particular,
n∑

k=−n

|f̂k|2 ≤ ‖f ‖2
2 for all n ∈ N ,

yielding Bessel’s inequality as n →∞ . 2

The next result shows that the sequence of partial sums of the Fourier series
of f converges to f in the weaker sense of integral mean squares. Here “wea-
ker sense” means that uniform convergence in C2π implies “convergence of
integral mean squares”.



9

Theorem 3. (Formulas of Parseval and of Plancherel) If f ∈ S2π then

lim
n→∞

‖sn(f)− f ‖2
2 ≡ lim

n→∞

1

2π

π∫
−π

∣∣∣ n∑
k=−n

f̂k eikx − f(x)
∣∣∣2dx = 0

und
∞∑

k=−∞

|f̂k|2 =
1

2π

π∫
−π

|f(x)|2 dx = ‖f ‖2
2 .

Proof. The triangle inequality (w.r.t. the integral norm ‖ · ‖2) yields

(4) ‖f − sn(f) ‖2 ≤ ‖f − σn(f) ‖2 + ‖σn(f)− sn(f) ‖2 =: I1 + I2 .

Let ε > 0 be given. By Cor. 1.7 and 1.8, Chap. V, f is bounded, say ‖f‖∞ ≤
Mf , and by Lemma 1 and 3 ‖σn(f)‖∞ ≤ Mf . Further, by Cor. 1.8, Chap.
V, f has at most countably many points of discontinuity. Let the first such
point be the center of an open interval with length (ε/Mf )

22−1 , the j-th
be the center of an open interval with length (ε/Mf )

22−j , j ∈ N. Denote
the union of all these intervals by E. Then, by the triangle inequality (w.r.t.
‖ · ‖2-norm) and the notation Ec := [−π, π] \ E,

(5) I1 ≤ 2Mf

( ∞∑
j=1

(ε/Mf )
22−j

)1/2

+
(∫

Ec

sup
x∈Ec

|σn(f, x)− f(x)|2dx
)1/2

By Part (b) of Fejér’s Theorem, the last integrand becomes less than ε/
√

2π
for all n ≥ N0 , hence I1 ≤ 2ε + ε, n ≥ N0.
Since σn(f) und sn(f) are trigonometric polynomials of degree less or equal
n, we obtain by Theorem 2 (a)

(6) ‖σn(f)− sn(f) ‖2
2 =

∥∥∥ n∑
k=−n

|k|
n + 1

f̂k eikx
∥∥∥2

2
=

n∑
k=−n

( |k|
n + 1

)2

|f̂k|2

for all n ∈ N . Since
∑∞

k=−∞ |f̂k|2 converges by Bessel’s inequality, choose
N1 ∈ N so large that∑

N<|k|≤n

( |k|
n + 1

)2

|f̂k|2 ≤
∑
|k|>N

|f̂k|2 < ε/2 for all n > N1.

So N1 ∈ N is fixed. Now choose N2 ∈ N, N2 > N1, so big that

|k|2

(n + 1)2
<

ε

2(〈f, f〉+ 1)
for all k, |k| ≤ N1, all n ≥ N2 .
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In view of (6) the last two estimates and Bessel’s inequality show that for all
n ≥ max(N0, N2) we have

I2 ≤
ε

2(〈f, f〉+ 1)

N∑
k=−N

|f̂k|2+
∑

N<|k|≤n

( |k|
n + 1

)2

|f̂k|2 < ε , n ≥ max(N0, N2),

and, therefore, on account of (4), limn→∞ ‖f − sn(f) ‖2 = 0.

The final statement, i.e.,
∑∞

k=−∞ |f̂k|2 = ‖f ‖2
2 , is an easy consequence of the

first part and of Theorem 2 when n →∞. 2

Application:
∞∑

j=0

(2j + 1)−2 =
π2

8
; in particular

∞∑
k=1

k−2 =
π2

6
.

Proof. Consider

f(x) =

{
−1 , −π ≤ x < 0

1 , 0 ≤ x < π
=⇒ f̂k =

1

πik

{
0 , k even
2 , k odd .

Theorem 3 yields

1 =
1

2π

π∫
−π

|f(x)|2 dx =
∑

k ungerade

4

π2k2
=

∞∑
j=0

8

π2(2j + 1)2

or equivalently
∑∞

j=0(2j + 1)−2 = π2/8 . Defining

S :=
∞∑

k=1

1

k2
=

∞∑
j=0

1

(2j + 1)2
+

∞∑
j=1

1

(2j)2
=

π2

8
+

1

4
S ,

this equation in S admits the unique solution S = π2/6 .

Lemma 4. Let f ∈ C2π be piecewise continuously differentiable, i.e., f ′ has

at most finitely many jump discontinuities. Then [̂f ′]k = ik f̂k for all k ∈ Z .

Proof: First assume that f ′ has only one jump discontinuity, say at x0 ∈
[−π, π] . Then, integration by parts yields

2π [̂f ′]k =
( x0−∫
−π

+

π∫
x0+

)
f ′(x) e−ikx dx

= f(x)e−ikx
∣∣∣x0

−π
+ f(x)e−ikx

∣∣∣π
x0

−
π∫

−π

f(x) (−ik) e−ikx dx .
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The boundary terms vanish since f, e−ikx ∈ C2π . This proves the assertion
in the case of just one jump discontinuity of f ′. If f ′ has finitely many jump
discontinuities, the previous procedure may be repeated finitely many times.

2

Theorem 5 Let f ∈ C2π be piecewise continuously differentiable. Then the
partial sums of the Fourier series of f converge in the supremum norm to
f , i.e.,

lim
n→∞

‖f − sn(f) ‖∞ ≡ lim
n→∞

sup
x∈[−π,π]

∣∣∣∣∣f(x)−
n∑

k=−n

f̂k eikx

∣∣∣∣∣ = 0 .

Proof. Since f ′ is piecewise continuous,
∫ π

−π
|f ′(x)|2 dx < ∞ . Then by

Theorem 3 and Lemma 4

∞∑
k=−∞

|f̂k| = |f̂0|+
∑
k 6=0

∣∣∣∣∣ [̂f ′]kik

∣∣∣∣∣
≤ 1

2π

π∫
−π

|f(x)| dx +
(∑

k

| [̂f ′]k|
2
)1/2(∑

k 6=0

k−2
)1/2

< ∞;

here we used the Cauchy-Schwarz inequality in the vector space

`2(Z) = {(ak)k :
∞∑

k=−∞

|ak|2 < ∞}

endowed with the scalar product

〈(ak)k, (bk)k〉`2 :=
∞∑

k=−∞

ak bk ,

see the Appendix. Using the Weierstraß M-test, the sequence of partial sums( ∑
|k|≤n

f̂k eikx
)

n
is uniformly convergent to a continuous (!) function. Now

the Uniqueness Theorem yields the assertion. 2
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D. Appendix

Lemma. Let X be a vector space over the field C (or R ) with scalar product
〈·, ·〉 . Then the inequality of Cauchy-Schwarz

|〈f, g〉| ≤ 〈f, f〉1/2〈g, g〉1/2

holds for all f, g ∈ X. Defining ‖f ‖X := 〈f, f〉1/2, the triangle inequality

‖f + g ‖X ≤ ‖f‖X + ‖g‖X

holds for all f, g ∈ X; moreover, ‖ · ‖X is a norm on X.

Proof. For f = 0 , the inequalities are obvious. Now let f 6= 0 , set α = 〈f, g〉
and choose λ = −α/〈f, f〉 . Then a simple calculation shows that

0 ≤ 〈λf + g, λf + g〉 = |λ|2‖f‖2
X + λ〈f, g〉+ λ〈g, f〉+ ‖g‖2

X = ‖g‖2
X −

|α|2

‖f‖2
X

,

yielding the Cauchy-Schwarz inequality.
The triangle inequality may now be proved analogously to the triangle ine-
quality on C :

‖f + g‖2
X = 〈f + g, f + g〉 = ‖f‖2

X + 〈f, g〉+ 〈g, f〉+ ‖g‖2
X

= ‖f‖2
X + 2 Re (〈f, g〉) + ‖g‖2

X ≤ ‖f‖2
X + 2‖f‖X‖g‖X + ‖g‖2

X .

2


