Fourier series

A. Complex numbers - a recapitulation

Let $a, b \in \mathbb{R}$ and $z=a+i b \in \mathbb{C}$. The complex number $\bar{z}:=a-i b$ is called the complex conjugate of z. The absolute value $|z|$ is defined as

$$
|z|:=\sqrt{z \bar{z}}=\sqrt{a^{2}+b^{2}} \quad(\geq 0) .
$$

We call $a=\operatorname{Re}(z)$ the real part of z and $b=\operatorname{Im}(z)$ the imaginary part of z. We have

$$
\operatorname{Re}(z)=\frac{1}{2}(z+\bar{z}), \quad \operatorname{Im}(z)=\frac{1}{2 i}(z-\bar{z})
$$

Note: $z_{1}=z_{2} \Longleftrightarrow \operatorname{Re}\left(z_{1}\right)=\operatorname{Re}\left(z_{2}\right)$ and $\operatorname{Im}\left(z_{1}\right)=\operatorname{Im}\left(z_{2}\right)$.
The following calculation rules hold for conjugation and for taking the absolute value. When $z, w \in \mathbb{C}$, then

$$
\begin{gathered}
\overline{\bar{z}}=z, \overline{z+w}=\bar{z}+\bar{w}, \overline{z \cdot w}=\bar{z} \cdot \bar{w} \\
\operatorname{Re}(z) \leq|\operatorname{Re}(z)| \leq|z|, \quad \operatorname{lm}(z) \leq|\operatorname{lm}(z)| \leq|z| \\
|z| \geq 0, \quad|z|=0 \Longleftrightarrow z=0, \quad|z w|=|z||w| \\
|z+w| \leq|z|+|w| \quad \text { (triangle inequality). }
\end{gathered}
$$

Definition: A sequence $\left(c_{n}\right)_{n \in \mathbb{N}}$ converges to $c \in \mathbb{C}$, if to each $\varepsilon>0$ there exists some $n_{0} \in \mathbb{N}$ such that

$$
\begin{gathered}
\left|c_{n}-c\right|<\varepsilon \quad \text { for all } n \geq n_{0} . \\
\text { Recall: } \quad c_{n} \rightarrow c \Longleftrightarrow \operatorname{Re}\left(c_{n}\right) \rightarrow \operatorname{Re}(c) \text { and } \operatorname{Im}\left(c_{n}\right) \rightarrow \operatorname{Im}(c) .
\end{gathered}
$$

Euler's formula holds

$$
\cos x+i \sin x=e^{i x} \quad\left(=\sum_{n=0}^{\infty} \frac{(i x)^{n}}{n!}\right),
$$

since $i^{n}=1$ if $n=4 k, i^{n}=i$ if $n=4 k+1, i^{n}=-1$ if $n=4 k+2$, and $i^{n}=-i$ if $n=4 k+3, k \in \mathbb{Z}$, and, therefore,

$$
\begin{aligned}
\cos x & =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} x^{2 k}=\sum_{k=0}^{\infty} \frac{(i x)^{2 k}}{(2 k)!} \\
i \sin x & =i \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1}=\sum_{k=0}^{\infty} \frac{(i x)^{2 k+1}}{(2 k+1)!} \quad \text { (conv. absolutely), }
\end{aligned}
$$

We recall the special case of the functional equation for the exponential function

$$
e^{i x} e^{i y}=e^{i(x+y)} \quad \text { for all } x, y \in \mathbb{R} ;
$$

in particular, $e^{i x}$ is a 2π-periodic function, $e^{i(x+2 \pi)}=e^{i x}$ all $x \in \mathbb{R}$, and $\overline{e^{i x}}=e^{-i x}$.

B. Pointwise convergence of Fourier series

A basic problem of analysis consists in controlling/approximating "complicated" quantities by "simple" ones:
a) A real number $x, 0<x<1, x=0, a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{i} \in\{0, \ldots, 9\}$, is determined by the sequence of the finite decimal fraction $\left(x_{n}\right)_{n}, x_{n}=$ $0, a_{1}, \ldots, a_{n}$.
b) If $f \in C^{\infty}(I), a \in I$, one can construct the sequence of Taylor polynomials $\left(T_{n}(f ; a)\right)_{n}, T_{n}(f ; a)(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}$, and try to approximate f by this sequence of Taylor polynomials.
c) J. Fourier's (1768-1830) vision was: Each continuous, 2π-periodic function can be approximated arbitrarily accurate by the partial sums of the nowadays called Fourier series (in particular, by trigonometric polynomials $\left.t(x):=\sum_{k=-n}^{n} a_{k} e^{i k x}\right)$.
Now we want to state this more precisely.

Let the uniformly convergent trigonometric series

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty} c_{k} e^{i k x}=: f(x), \quad c_{k} \in \mathbb{C} \tag{1}
\end{equation*}
$$

be given. Since all terms of the sum are continuous and 2π-periodic, this series defines a continuous and 2π-periodic function; Notation: $f \in C_{2 \pi}$, where

$$
C_{2 \pi}:=\{g \in C(\mathbb{R}, \mathbb{C}): g(x+2 \pi)=g(x) \text { all } x \in \mathbb{R}\}
$$

Problem: What is the relation between f and $\left(c_{k}\right)_{k}$? How can one obtain the coefficients $\left(c_{k}\right)_{k}$ from f, and vice versa? Are the coefficients uniquely determined?

Recall that for jump continuous functions $f:[a, b] \subset \mathbb{R} \rightarrow \mathbb{C}$ we defined

$$
\int_{a}^{b} f(x) d x:=\int_{a}^{b}(\operatorname{Re} f(x)) d x+i \int_{a}^{b}(\operatorname{Im} f(x)) d x
$$

Therefore, the following definition is reasonable.
Definition. Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be a 2π-periodic, jump continuous function, notation: $f \in \mathcal{S}_{2 \pi}$. We call the numbers

$$
\widehat{f_{k}}:=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i k x} d x, \quad k \in \mathbb{Z}
$$

the Fourier coefficients of f and the series

$$
\sum_{k=-\infty}^{\infty} \widehat{f}_{k} e^{i k x}
$$

i.e., the sequence of the partial sums $\left(s_{n}(f)\right)_{n}, s_{n}(f ; x):=\sum_{k=-n}^{n} \widehat{f_{k}} e^{i k x}$, the Fourier series of f.

If f, like in (1), is given by a uniformly convergent trigonometric series, then

$$
\begin{aligned}
\widehat{f}_{j} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\sum_{k=-\infty}^{\infty} c_{k} e^{i k x}\right) e^{-i j x} d x=\sum_{k=-\infty}^{\infty} c_{k} \frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i(k-j) x} d x \\
& =c_{j}, \quad \text { since } \frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i(k-j) x} d x= \begin{cases}1 & , k=j \\
0 & , k \neq j\end{cases}
\end{aligned}
$$

In particular, if f is a trigonometric polynomial,

$$
\begin{equation*}
f(x)=\sum_{k=-N}^{N} c_{k} e^{i k x} \Rightarrow s_{n}(f)=f, n \geq N \tag{2}
\end{equation*}
$$

Counterexamples show that the partial sums do not converge in general there exist $f \in C_{2 \pi}$, whose partial sums diverge in one point (and hence in countably many points). L. Fejér (1880-1959) recognized that, though the partial sums do not converge in the sense of Cauchy, they do converge in a weaker sense, namely, their first arithmetic means converge.
(Recall: If $\left(s_{n}\right)_{n} \subset \mathbb{C}, s_{n} \rightarrow s \quad \Rightarrow \quad \frac{1}{n+1} \sum_{k=0}^{n} s_{k} \rightarrow s$.)

We compute the first arithmetic means of the partial sums of the Fourier series

$$
\begin{align*}
\frac{1}{n+1} \sum_{k=0}^{n} s_{k}(f ; x) & =\frac{1}{n+1} \sum_{k=0}^{n} \sum_{j=-k}^{k} \widehat{f}_{j} e^{i j x}=\frac{1}{n+1} \sum_{j=-n}^{n} \widehat{f}_{j}\left(\sum_{k=|j|}^{n} 1\right) e^{i j x} \\
& =\sum_{j=-n}^{n} \widehat{f}_{j} \frac{n+1-|j|}{n+1} e^{i j x}=\sum_{j=-n}^{n}\left(1-\frac{|j|}{n+1}\right) \widehat{f}_{j} e^{i j x} . \tag{3}
\end{align*}
$$

Theorem 1 (Fejér's Theorem). Let $f \in \mathcal{S}_{2 \pi}$ (i.e., $f: \mathbb{R} \rightarrow \mathbb{C}$ is 2π periodic and jump continuous).
a) If f is continuous at t, then

$$
\sigma_{n}(f ; t):=\sum_{k=-n}^{n}\left(1-\frac{|k|}{n+1}\right) \widehat{f}_{k} e^{i k t} \rightarrow f(t) \text { when } n \rightarrow \infty .
$$

b) If f is continuous on $[a, b] \subseteq[-\pi, \pi]$, then the convergence is uniform on $[a, b]$. In particular, if $f \in C_{2 \pi}$, then

$$
\lim _{n \rightarrow \infty}\left\|\sigma_{n}(f)-f\right\|_{\infty}:=\lim _{n \rightarrow \infty}\left[\sup _{-\pi \leq t \leq \pi}\left|\sigma_{n}(f ; t)-f(t)\right|\right]=0
$$

Corollary 1 (Uniqueness Theorem). If $f, g \in C_{2 \pi}$ and $\widehat{f}_{k}=\widehat{g}_{k}$ for all $k \in \mathbb{Z}$, then $f=g$.

Proof. Use the triangle inequality for the $\|\cdot\|_{\infty}$-norm and the hypothesis $\widehat{f}_{k}=\widehat{g}_{k}$ to obtain

$$
\|f-g\|_{\infty} \leq\left\|f-\sigma_{n}(f)\right\|_{\infty}+\left\|\sigma_{n}(g)-g\right\|_{\infty} \rightarrow 0 \text { for } n \rightarrow \infty
$$

Corollary 2 (Approximation Theorem). To each $f \in C_{2 \pi}$ and each $\varepsilon>0$ there exists a trigonometric polynomial T such that

$$
\|f-T\|_{\infty}<\varepsilon .
$$

Proof. Choose, e.g., $T=\sigma_{n}(f)$.

Corollary 3 (Lemma of Riemann). If $f \in C_{2 \pi}$, then $\lim _{|k| \rightarrow \infty} \widehat{f_{k}}=0$.

Proof. To given $\varepsilon>0$ choose $n \in \mathbb{N}$ such that $\left\|f-\sigma_{n}(f)\right\|_{\infty}<\varepsilon$. Then one obtains for $|k|>n$ by the definition of the Fourier coefficients

$$
\left|\widehat{f}_{k}\right|=\left|\widehat{f_{k}}-\widehat{\sigma_{n}(f)_{k}}\right|=\left|\left(f \widehat{-\sigma_{n}(f)}\right)_{k}\right| \leq\left\|f-\sigma_{n}(f)\right\|_{\infty}<\varepsilon .
$$

To prove the Theorem of Fejér we need three lemmas.

Lemma 1. If $f \in \mathcal{S}_{2 \pi}$, then
$\sigma_{n}(f ; t)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t-s) K_{n}(s) d s, \quad$ where $K_{n}(s)=\sum_{k=-n}^{n}\left(1-\frac{|k|}{n+1}\right) e^{i k s}$.
Proof.

$$
\begin{aligned}
& \sigma_{n}(f ; t)=\sum_{k=-n}^{n}\left(1-\frac{|k|}{n+1}\right) \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i k x} d x e^{i k t} \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \sum_{k=-n}^{n}\left(1-\frac{|k|}{n+1}\right) e^{i k(t-x)} d x \\
& =\frac{1}{2 \pi} \int_{t-\pi}^{t+\pi} f(t-y) K_{n}(y) d y=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t-y) K_{n}(y) d y
\end{aligned}
$$

here the last equality holds, because $f(t-y) K_{n}(y)$ is a 2π-periodic function in y and the integral of a periodic function, which is integrated over a full period, does not change, if one shifts the integration interval.

Lemma 2.

$$
K_{n}(y)= \begin{cases}n+1 & , y=2 N \pi \\ \frac{1}{n+1}\left(\frac{\sin \frac{n+1}{2} y}{\sin \frac{1}{2} y}\right)^{2} & , y \neq 2 N \pi, N \in \mathbb{Z}\end{cases}
$$

Proof. For $y=2 N \pi$ we have

$$
\sum_{k=-n}^{n}\left(1-\frac{|k|}{n+1}\right)=2 n+1-\frac{2}{n+1} \sum_{k=1}^{n} k=n+1
$$

(Note: $2 \sum_{k=1}^{n} k=n(n+1)$.) Now let $y \neq 2 N \pi, N \in \mathbb{Z}$ and choose $f(y)=\sum_{j=-n}^{n} e^{i j y}$ in (3). Then (3) implies

$$
\sum_{k=-n}^{n}\left(1-\frac{|k|}{n+1}\right) e^{i k y}=\frac{1}{n+1} \sum_{k=0}^{n} \sum_{j=-k}^{k} e^{i j y}=K_{n}(y)
$$

The inner sum on the right hand side is a finite geometric series. Therefore,

$$
\begin{aligned}
e^{-i k y} \sum_{j=0}^{2 k} e^{i j y} & =e^{-i k y} \frac{1-e^{i(2 k+1) y}}{1-e^{i y}}=\frac{\left(1-e^{-i y}\right)\left(e^{-i k y}-e^{i(k+1) y}\right)}{2-2 \cos y} \\
& =\frac{e^{-i k y}-e^{i(k+1) y}-e^{-i(k+1) y}+e^{i k y}}{2(1-\cos y)}=\frac{\cos k y-\cos (k+1) y}{1-\cos y}
\end{aligned}
$$

Hence

$$
K_{n}(y)=\frac{1}{n+1} \sum_{k=0}^{n} \frac{\cos k y-\cos (k+1) y}{1-\cos y}=\frac{1}{n+1} \frac{1-\cos (n+1) y}{1-\cos y}
$$

and, since $1-\cos m y=2 \sin ^{2} \frac{1}{2} m y, m \in \mathbb{N}_{0}$, the last display yields the assertion.

Lemma 3.

(i) $K_{n}(y) \geq 0$ for all $y \in \mathbb{R}$.
(ii) $K_{n}(y)$ converges uniformly to 0 on $[-\pi,-\delta] \cup[\delta, \pi]$ for each δ (fixed), $0<\delta<\pi$.
(iii) $\frac{1}{2 \pi} \int_{-\pi}^{\pi} K_{n}(y) d y=1$.

Proof. (i) is obvious on account of Lemma 2. Likewise (ii), since

$$
K_{n}(y) \leq \frac{1}{(n+1)} \frac{1}{\sin ^{2} \delta / 2} \rightarrow 0, n \rightarrow \infty, \text { for every fixed } \delta, 0<\delta<\pi
$$

(iii) $\frac{1}{2 \pi} \int_{-\pi}^{\pi} K_{n}(y) d y=\sum_{k=-n}^{n}\left(1-\frac{|k|}{n+1}\right) \frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i k y} d y=1$, since all terms of the sum except for the term with $k=0$ vanish.

Idea of proof of Fejér's Theorem: In a certain sense, for small $\delta>0$ and for large n we may argue as follows:

$$
\begin{aligned}
\sigma_{n}(f ; t) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} K_{n}(y) f(t-y) d y \stackrel{(i i)}{\approx} \frac{1}{2 \pi} \int_{|y| \leq \delta} K_{n}(y) f(t-y) d y \\
& \approx f(t) \frac{1}{2 \pi} \int_{|y| \leq \delta} K_{n}(y) d y \quad(\text { since } f \text { is continuous at } t) \\
& \stackrel{(i i)}{\approx} f(t) \frac{1}{2 \pi} \int_{-\pi}^{\pi} K_{n}(y) d y \stackrel{(i i i)}{\approx} f(t) .
\end{aligned}
$$

Proof of Fejér's Theorem. Let $\varepsilon>0$ be given. Note the following facts:
(α) Since $f \in \mathcal{S}_{2 \pi}$, there exists an $M>0$ such that $|f(y)| \leq M$ for all y.
(β) Due to the continuity of f at t there exists $\delta=\delta_{\varepsilon, t}>0$ such that $|f(y)-f(t)|<\frac{\varepsilon}{2}$ for all $y,|y-t|<\delta$. This δ will now be fixed.
$(\gamma)\left|K_{n}(y)\right| \leq \frac{\varepsilon}{4 M}$ for all $y, \delta \leq|y| \leq \pi$ and $n \geq N_{t, \varepsilon}$.

Thus, by Lemma 1,

$$
\begin{aligned}
\left|\sigma_{n}(f ; t)-f(t)\right| & \stackrel{(i i i)}{=}\left|\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t-y) K_{n}(y) d y-\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) K_{n}(y) d y\right| \\
& \leq \frac{1}{2 \pi}\left(\int_{y \mid \leq \delta}+\int_{\delta \leq|y| \leq \pi}\right)|f(t-y)-f(t)| K_{n}(y) d y \\
& \stackrel{(\beta, \alpha)}{\leq} \frac{\varepsilon}{2} \frac{1}{2 \pi} \int_{-\delta}^{\delta} K_{n}(y) d y+\frac{2 M}{2 \pi} \int_{\delta \leq|y| \leq \pi} K_{n}(y) d y \\
& \stackrel{(\gamma)}{\leq} \frac{\varepsilon}{2}+\frac{M}{\pi} \int_{\delta \leq|y| \leq \pi} \frac{\varepsilon}{4 M} d y<\varepsilon \quad \text { for all } n \geq N_{\varepsilon, t}
\end{aligned}
$$

If f is continuous on $[a, b]$, then f is uniformly continuous on $[a, b]$, and the previous arguments hold uniformly w.r.t. $t \in[a, b]$.

C. Parseval's formula

We introduce a scalar product and a related norm on $\mathcal{S}_{2 \pi}$:

$$
\langle f, g\rangle:=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} d x, \quad\|f\|_{2}:=\langle f, f\rangle^{1 / 2}, \quad f, g \in \mathcal{S}_{2 \pi}
$$

then there hold the inequality of Cauchy-Schwarz (cf. Chap. V, Cor. 2.19 or see the Appendix) and the triangle inequality, i.e.,

$$
|\langle f, g\rangle| \leq\|f\|_{2}\|g\|_{2}, \quad\|f+g\|_{2} \leq\|f\|_{2}+\|g\|_{2}
$$

Theorem 2. For $f \in \mathcal{S}_{2 \pi}$

$$
\left\|f-s_{n}(f)\right\|_{2}^{2}=\|f\|_{2}^{2}-\sum_{k=-n}^{n}\left|\widehat{f}_{k}\right|^{2}
$$

where $s_{n}(f ; x)=\sum_{k=-n}^{n} \widehat{f}_{k} e^{i k x}, n \in \mathbb{N}$, denote the partial sums of the Fourier series. In particular, one gets the following results:
(a) If f is a trigonometric polynomial of degree N, i.e., $f(x)=\sum_{k=-N}^{N} \widehat{f}_{k} e^{i k x}$, then, by (2),

$$
\|f\|_{2}^{2}=\sum_{k=-n}^{n}\left|\widehat{f}_{k}\right|^{2} \quad \text { for every } n \geq N
$$

(b) If $f \in \mathcal{S}_{2 \pi}$, then

$$
\sum_{k=-\infty}^{\infty}\left|\widehat{f}_{k}\right|^{2} \leq\|f\|_{2}^{2}, \quad \quad \text { (Bessel's inequality) }
$$

Proof. Let $g:=s_{n}(f)$. Then $\widehat{g}_{k}=\widehat{f}_{k}$ for $|k| \leq n$, and even

$$
\begin{aligned}
\langle f, g\rangle & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \overline{\sum_{k=-n}^{n} \widehat{\hat{f}_{k}} e^{i k x}} d x=\sum_{k=-n}^{n} \overline{\widehat{f}_{k}} \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i k x} d x \\
& =\sum_{k=-n}^{n} \overline{\widehat{f}_{k}} \widehat{f}_{k}=\sum_{k=-n}^{n} \overline{\widehat{g}_{k}} \frac{1}{2 \pi} \int_{-\pi}^{\pi} g(x) e^{-i k x} d x=\langle g, g\rangle .
\end{aligned}
$$

Hence

$$
\begin{aligned}
0 & \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)-g(x)|^{2} d x=\langle f-g, f-g\rangle \\
& =\langle f, f\rangle-\langle f, g\rangle-\langle g, f\rangle+\langle g, g\rangle \\
& =\|f\|_{2}^{2}-2 \sum_{k=-n}^{n}\left|\widehat{f}_{k}\right|^{2}+\sum_{k=-n}^{n}\left|\widehat{f}_{k}\right|^{2}=\|f\|_{2}^{2}-\sum_{k=-n}^{n}\left|\widehat{f}_{k}\right|^{2} .
\end{aligned}
$$

In particular,

$$
\sum_{k=-n}^{n}\left|\widehat{f}_{k}\right|^{2} \leq\|f\|_{2}^{2} \quad \text { for all } n \in \mathbb{N}
$$

yielding Bessel's inequality as $n \rightarrow \infty$.

The next result shows that the sequence of partial sums of the Fourier series of f converges to f in the weaker sense of integral mean squares. Here "weaker sense" means that uniform convergence in $C_{2 \pi}$ implies "convergence of integral mean squares".

Theorem 3. (Formulas of Parseval and of Plancherel) If $f \in \mathcal{S}_{2 \pi}$ then

$$
\lim _{n \rightarrow \infty}\left\|s_{n}(f)-f\right\|_{2}^{2} \equiv \lim _{n \rightarrow \infty} \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|\sum_{k=-n}^{n} \widehat{f}_{k} e^{i k x}-f(x)\right|^{2} d x=0
$$

und

$$
\sum_{k=-\infty}^{\infty}\left|\widehat{f}_{k}\right|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)|^{2} d x=\|f\|_{2}^{2}
$$

Proof. The triangle inequality (w.r.t. the integral norm $\|\cdot\|_{2}$) yields

$$
\begin{equation*}
\left\|f-s_{n}(f)\right\|_{2} \leq\left\|f-\sigma_{n}(f)\right\|_{2}+\left\|\sigma_{n}(f)-s_{n}(f)\right\|_{2}=: I_{1}+I_{2} . \tag{4}
\end{equation*}
$$

Let $\varepsilon>0$ be given. By Cor. 1.7 and 1.8, Chap. V, f is bounded, say $\|f\|_{\infty} \leq$ M_{f}, and by Lemma 1 and $3\left\|\sigma_{n}(f)\right\|_{\infty} \leq M_{f}$. Further, by Cor. 1.8, Chap. V, f has at most countably many points of discontinuity. Let the first such point be the center of an open interval with length $\left(\varepsilon / M_{f}\right)^{2} 2^{-1}$, the j-th be the center of an open interval with length $\left(\varepsilon / M_{f}\right)^{2} 2^{-j}, j \in \mathbb{N}$. Denote the union of all these intervals by E. Then, by the triangle inequality (w.r.t. $\|\cdot\|_{2}$-norm) and the notation $E^{c}:=[-\pi, \pi] \backslash E$,

$$
\begin{equation*}
I_{1} \leq 2 M_{f}\left(\sum_{j=1}^{\infty}\left(\varepsilon / M_{f}\right)^{2} 2^{-j}\right)^{1 / 2}+\left(\int_{E^{c}} \sup _{x \in E^{c}}\left|\sigma_{n}(f, x)-f(x)\right|^{2} d x\right)^{1 / 2} \tag{5}
\end{equation*}
$$

By Part (b) of Fejér's Theorem, the last integrand becomes less than $\varepsilon / \sqrt{2 \pi}$ for all $n \geq N_{0}$, hence $I_{1} \leq 2 \varepsilon+\varepsilon, n \geq N_{0}$.
Since $\sigma_{n}(f)$ und $s_{n}(f)$ are trigonometric polynomials of degree less or equal n, we obtain by Theorem 2 (a)

$$
\begin{equation*}
\left\|\sigma_{n}(f)-s_{n}(f)\right\|_{2}^{2}=\left\|\sum_{k=-n}^{n} \frac{|k|}{n+1} \widehat{f}_{k} e^{i k x}\right\|_{2}^{2}=\sum_{k=-n}^{n}\left(\frac{|k|}{n+1}\right)^{2}\left|\widehat{f}_{k}\right|^{2} \tag{6}
\end{equation*}
$$

for all $n \in \mathbb{N}$. Since $\sum_{k=-\infty}^{\infty}\left|\widehat{f}_{k}\right|^{2}$ converges by Bessel's inequality, choose $N_{1} \in \mathbb{N}$ so large that

$$
\sum_{N<|k| \leq n}\left(\frac{|k|}{n+1}\right)^{2}\left|\widehat{f}_{k}\right|^{2} \leq \sum_{|k|>N}\left|\widehat{f}_{k}\right|^{2}<\varepsilon / 2 \quad \text { for all } n>N_{1}
$$

So $N_{1} \in \mathbb{N}$ is fixed. Now choose $N_{2} \in \mathbb{N}, N_{2}>N_{1}$, so big that

$$
\frac{|k|^{2}}{(n+1)^{2}}<\frac{\varepsilon}{2(\langle f, f\rangle+1)} \quad \text { for all } k,|k| \leq N_{1}, \text { all } n \geq N_{2}
$$

In view of (6) the last two estimates and Bessel's inequality show that for all $n \geq \max \left(N_{0}, N_{2}\right)$ we have

$$
I_{2} \leq \frac{\varepsilon}{2(\langle f, f\rangle+1)} \sum_{k=-N}^{N}\left|\widehat{f}_{k}\right|^{2}+\sum_{N<|k| \leq n}\left(\frac{|k|}{n+1}\right)^{2}\left|\widehat{f}_{k}\right|^{2}<\varepsilon, \quad n \geq \max \left(N_{0}, N_{2}\right)
$$

and, therefore, on account of (4), $\lim _{n \rightarrow \infty}\left\|f-s_{n}(f)\right\|_{2}=0$.
The final statement, i.e., $\sum_{k=-\infty}^{\infty}\left|\widehat{f}_{k}\right|^{2}=\|f\|_{2}^{2}$, is an easy consequence of the first part and of Theorem 2 when $n \rightarrow \infty$.

Application: $\sum_{j=0}^{\infty}(2 j+1)^{-2}=\frac{\pi^{2}}{8} ; \quad$ in particular $\quad \sum_{k=1}^{\infty} k^{-2}=\frac{\pi^{2}}{6}$.

Proof. Consider

$$
f(x)=\left\{\begin{array}{rl}
-1 & ,-\pi \leq x<0 \\
1, & 0 \leq x<\pi
\end{array} \quad \Longrightarrow \quad \widehat{f}_{k}=\frac{1}{\pi i k} \begin{cases}0 & , k \text { even } \\
2, & k \text { odd } .\end{cases}\right.
$$

Theorem 3 yields

$$
1=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)|^{2} d x=\sum_{k \text { ungerade }} \frac{4}{\pi^{2} k^{2}}=\sum_{j=0}^{\infty} \frac{8}{\pi^{2}(2 j+1)^{2}}
$$

or equivalently $\sum_{j=0}^{\infty}(2 j+1)^{-2}=\pi^{2} / 8$. Defining

$$
S:=\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\sum_{j=0}^{\infty} \frac{1}{(2 j+1)^{2}}+\sum_{j=1}^{\infty} \frac{1}{(2 j)^{2}}=\frac{\pi^{2}}{8}+\frac{1}{4} S
$$

this equation in S admits the unique solution $S=\pi^{2} / 6$.

Lemma 4. Let $f \in C_{2 \pi}$ be piecewise continuously differentiable, i.e., f^{\prime} has at most finitely many jump discontinuities. Then $\widehat{\left[f^{\prime}\right]_{k}}=i k \widehat{f_{k}}$ for all $k \in \mathbb{Z}$.

Proof: First assume that f^{\prime} has only one jump discontinuity, say at $x_{0} \in$ $[-\pi, \pi]$. Then, integration by parts yields

$$
\begin{aligned}
2 \pi\left[\widehat{\left.f^{\prime}\right]_{k}}\right. & =\left(\int_{-\pi}^{x_{0}-}+\int_{x_{0}+}^{\pi}\right) f^{\prime}(x) e^{-i k x} d x \\
& =\left.f(x) e^{-i k x}\right|_{-\pi} ^{x_{0}}+\left.f(x) e^{-i k x}\right|_{x_{0}} ^{\pi}-\int_{-\pi}^{\pi} f(x)(-i k) e^{-i k x} d x
\end{aligned}
$$

The boundary terms vanish since $f, e^{-i k x} \in C_{2 \pi}$. This proves the assertion in the case of just one jump discontinuity of f^{\prime}. If f^{\prime} has finitely many jump discontinuities, the previous procedure may be repeated finitely many times.

Theorem 5 Let $f \in C_{2 \pi}$ be piecewise continuously differentiable. Then the partial sums of the Fourier series of f converge in the supremum norm to f, i.e.,

$$
\lim _{n \rightarrow \infty}\left\|f-s_{n}(f)\right\|_{\infty} \equiv \lim _{n \rightarrow \infty} \sup _{x \in[-\pi, \pi]}\left|f(x)-\sum_{k=-n}^{n} \widehat{f}_{k} e^{i k x}\right|=0 .
$$

Proof. Since f^{\prime} is piecewise continuous, $\int_{-\pi}^{\pi}\left|f^{\prime}(x)\right|^{2} d x<\infty$. Then by Theorem 3 and Lemma 4

$$
\begin{aligned}
\sum_{k=-\infty}^{\infty}\left|\widehat{f}_{k}\right| & =\left|\widehat{f}_{0}\right|+\sum_{k \neq 0}\left|\frac{\left[\widehat{f^{\prime}}\right]_{k}}{i k}\right| \\
& \left.\leq \frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)| d x+\left.\left(\sum_{k} \mid \widehat{\left[f^{\prime}\right.}\right]_{k}\right|^{2}\right)^{1 / 2}\left(\sum_{k \neq 0} k^{-2}\right)^{1 / 2}<\infty
\end{aligned}
$$

here we used the Cauchy-Schwarz inequality in the vector space

$$
\ell^{2}(\mathbb{Z})=\left\{\left(a_{k}\right)_{k}: \sum_{k=-\infty}^{\infty}\left|a_{k}\right|^{2}<\infty\right\}
$$

endowed with the scalar product

$$
\left\langle\left(a_{k}\right)_{k},\left(b_{k}\right)_{k}\right\rangle_{\ell^{2}}:=\sum_{k=-\infty}^{\infty} a_{k} \overline{b_{k}},
$$

see the Appendix. Using the Weierstraß M-test, the sequence of partial sums $\left(\sum_{|k| \leq n} \widehat{f_{k}} e^{i k x}\right)_{n}$ is uniformly convergent to a continuous (!) function. Now the Uniqueness Theorem yields the assertion.

D. Appendix

Lemma. Let X be a vector space over the field $\mathbb{C}($ or $\mathbb{R})$ with scalar product $\langle\cdot, \cdot\rangle$. Then the inequality of Cauchy-Schwarz

$$
|\langle f, g\rangle| \leq\langle f, f\rangle^{1 / 2}\langle g, g\rangle^{1 / 2}
$$

holds for all $f, g \in X$. Defining $\|f\|_{X}:=\langle f, f\rangle^{1 / 2}$, the triangle inequality

$$
\|f+g\|_{X} \leq\|f\|_{X}+\|g\|_{X}
$$

holds for all $f, g \in X$; moreover, $\|\cdot\|_{X}$ is a norm on X.
Proof. For $f=0$, the inequalities are obvious. Now let $f \neq 0$, set $\alpha=\langle f, g\rangle$ and choose $\lambda=-\bar{\alpha} /\langle f, f\rangle$. Then a simple calculation shows that
$0 \leq\langle\lambda f+g, \lambda f+g\rangle=|\lambda|^{2}\|f\|_{X}^{2}+\lambda\langle f, g\rangle+\bar{\lambda}\langle g, f\rangle+\|g\|_{X}^{2}=\|g\|_{X}^{2}-\frac{|\alpha|^{2}}{\|f\|_{X}^{2}}$,
yielding the Cauchy-Schwarz inequality.
The triangle inequality may now be proved analogously to the triangle inequality on \mathbb{C} :

$$
\begin{aligned}
\|f+g\|_{X}^{2} & =\langle f+g, f+g\rangle=\|f\|_{X}^{2}+\langle f, g\rangle+\langle g, f\rangle+\|g\|_{X}^{2} \\
& =\|f\|_{X}^{2}+2 \operatorname{Re}(\langle f, g\rangle)+\|g\|_{X}^{2} \leq\|f\|_{X}^{2}+2\|f\|_{X}\|g\|_{X}+\|g\|_{X}^{2} .
\end{aligned}
$$

