Fachbereich Mathematik
Prof. Dr. W. Trebels
Dr. V. Gregoriades
Dr. A. Linshaw

07-07-2010

13th Tutorial Analysis II (engl.)
 Summer Semester 2010

(T13.1) (Fubini's Theorem not applicable)

Let $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$,

$$
f(x, y)= \begin{cases}\frac{x-y}{(x+y)^{3}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Compute $I_{1}=\int_{0}^{1}\left(\int_{0}^{1} f(x, y) d x\right) d y$ and $I_{2}=\int_{0}^{1}\left(\int_{0}^{1} f(x, y) d y\right) d x$.
(b) Remark that $I_{1} \neq I_{2}$. Does this contradict Fubini's Theorem?
(T13.2) (Fubini's Theorem not Applicable).
On the square $Q:=[0,1] \times[0,1]$ we consider the function $f: Q \rightarrow \mathbb{R}$,

$$
f(x, y):=\left\{\begin{array}{cl}
0 & \text { if } x \text { or } y \text { are irrational; } \\
1 / n & \text { if } y \text { is rational and } x=m / n \\
& \text { with } n \in \mathbb{N}, m \in \mathbb{N}_{0} \text { relatively prime. }
\end{array}\right.
$$

(a) Show that $\int_{0}^{1} f(x, y) d x$ exists and has the value 0 for every $y \in[0,1]$.
(b) Show that the following integrals exist and both vanish:

$$
\int_{0}^{1}\left[\int_{0}^{1} f(x, y) d x\right] d y=\int_{Q} f(x, y) d(x, y)=0
$$

(c) Show that $\int_{0}^{1} f(x, y) d y$ does not exist for rational $x \in[0,1]$.
(T13.3) (The Center of Gravity of a Pyramid)
We consider a pyramid P with a rectangular base Q which is parallel to the (x, y) plane and which is given by letting the vertices be the points $(a, b, c),(a, B, c),(A, b, c)$ and (A, B, c) with $a<A, b<B$ and $c>0$. Let the apex of the pyramid be placed in the origin $(0,0,0)$. Notice that this pyramid is placed "upside down".

The center of gravity of P is the point $\left(\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}\right)$ with

$$
\bar{x}_{i}=\frac{1}{|P|} \int_{P} x_{i} d x
$$

Calculate the center of gravity of this pyramid.

