Fachbereich Mathematik
Prof. Dr. W. Trebels
Dr. V. Gregoriades
Dr. A. Linshaw

16-06-2010

10th Tutorial Analysis II (engl.) Summer Semester 2010

(T10.1)

1. Show that for (x, y) near $(1,1)$ the equation $x^{3}+y^{2}-2 x y=0$ may be solved uniquely with respect to x and that the obtained function $x=\varphi(y)$ is continuously differentiable near $y=1$. Compute $\varphi^{\prime}(1)$.
2. Show that φ is two times continuously differentiable near $y=1$ and calculate $\varphi^{\prime \prime}(1)$.
3. Is the equation uniquely solvable with respect to y near $(1,1)$?

(T10.2)

1. Let $M_{n}(\mathbb{R})$ be the set of all $n \times n$-matrices with real entries. We identify $M_{n}(\mathbb{R})$ with $\mathbb{R}^{n^{2}}$ and we consider the usual Euclidean norm.
Prove that the function det : $M_{n}(\mathbb{R}) \rightarrow \mathbb{R}$ is continuous. (This exercise is used in the proof of Lemma 1.5 Chap. VIII).
2. Let $U \subseteq \mathbb{R}^{n}$ be open, $f: U \rightarrow \mathbb{R}^{m}$ be a differentiable function and $a, x \in U$ with $\overline{a x} \subseteq U$. For all $x_{0} \in \mathbb{R}^{n}$ we view the matrix $D f\left(x_{0}\right)$ as a linear function from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$; by $\left\|D f\left(x_{0}\right)\right\|$ we mean the operator norm of the linear function $D f\left(x_{0}\right)$ (see the Remark 2.7 Chap. VI). Assume that

$$
\sup _{t \in[0,1]}\|D f(a+t(x-a))\|:=L<\infty
$$

Then $\|f(x)-f(a)\| \leq L\|x-a\|$. (This is Lemma 1.4 Chap. VIII).
Hint. Use the Mean Value Theorem (Theorem 2.8 Chap. VII). Recall though that this theorem is true only for functions which take real values.

(T10.3)

Let $f:[0,1] \rightarrow \mathbb{R}^{n}, f=\left(f_{1}, \ldots, f_{n}\right)$ and $g:[0,1] \rightarrow \mathbb{R}$ be two continuously differentiable functions and assume that $\left|f_{k}^{\prime}(t)\right| \leq g^{\prime}(t)$ for all $k=1, \ldots, n$ and all $t \in[0,1]$. Prove that

$$
\|f(1)-f(0)\|_{\infty} \leq|g(1)-g(0)|
$$

