Fachbereich Mathematik
Prof. Dr. W. Trebels
Dr. V. Gregoriades
Dr. A. Linshaw

14th Exercise Sheet Analysis II (engl.)
 Summer Semester 2010

(G14.1)

1. Let $a>0$. Find the volume of the solid A lying in the first octant of \mathbb{R}^{3} (i.e., the set of (x, y, z) with $x \geq 0, y \geq 0, z \geq 0$), inside the cylinder given by $x^{2}+y^{2}=a^{2}$, and under the plane given by $y=z$.
2. Let $a>0$. Find the volume of the subset A of \mathbb{R}^{3} lying inside both the sphere given by $x^{2}+y^{2}+z^{2}=4 a^{2}$ and the cylinder given by $x^{2}+y^{2}=2 a y$.
(G14.2) Let $a, b>0$. Use a suitable change of variables to calculate the area of the elliptic disk E in \mathbb{R}^{2} given by

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1
$$

(G14.3) Consider the integral of the function $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$ over the "ice cream cone" shaped region D bounded below by the cone $z=\sqrt{x^{2}+y^{2}}$ and above by the sphere of radius 2 .

1. Write down (but do not evaluate) this integral in the form

$$
\int_{a}^{b} \int_{\psi_{1}(x)}^{\psi_{2}(x)} \int_{\gamma_{1}(x, y)}^{\gamma_{2}(x, y)} f(x, y, z) d z d y d x
$$

2. Describe the region D in spherical coordinates.
3. Rewrite the above integral in spherical coordinates and evaluate it.
