Fachbereich Mathematik Prof. Dr. W. Trebels Dr. V. Gregoriades Dr. A. Linshaw

15-07-2010

14th Exercise Sheet Analysis II (engl.) Summer Semester 2010

(G14.1)

- 1. Let a > 0. Find the volume of the solid A lying in the first octant of \mathbb{R}^3 (i.e., the set of (x, y, z) with $x \ge 0$, $y \ge 0$, $z \ge 0$), inside the cylinder given by $x^2 + y^2 = a^2$, and under the plane given by y = z.
- 2. Let a > 0. Find the volume of the subset A of \mathbb{R}^3 lying inside both the sphere given by $x^2 + y^2 + z^2 = 4a^2$ and the cylinder given by $x^2 + y^2 = 2ay$.

(G14.2) Let a, b > 0. Use a suitable change of variables to calculate the area of the elliptic disk E in \mathbb{R}^2 given by

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1.$$

(G14.3) Consider the integral of the function $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$ over the "ice cream cone" shaped region D bounded below by the cone $z = \sqrt{x^2 + y^2}$ and above by the sphere of radius 2.

1. Write down (but do not evaluate) this integral in the form

$$\int_{a}^{b} \int_{\psi_{1}(x)}^{\psi_{2}(x)} \int_{\gamma_{1}(x,y)}^{\gamma_{2}(x,y)} f(x,y,z) \ dz \ dy \ dx.$$

- 2. Describe the region D in spherical coordinates.
- 3. Rewrite the above integral in spherical coordinates and evaluate it.