Fachbereich Mathematik
Prof. Dr. W. Trebels
Dr. V. Gregoriades
Dr. A. Linshaw
01-07-2010

12th Exercise Sheet Analysis II (engl.)
 Summer Semester 2010

(G12.1)

1. Let $A \subset \mathbb{R}^{2}$ be the set of points on the ellipse $x^{2}+4 y^{2}=1$ for which $x \geq 0$ or $y \geq 0$. Describe A as the image of a path $\gamma: I \rightarrow \mathbb{R}^{2}$, where I is an appropriate interval.
2. Compute the arc length of the path

$$
\gamma:[1,2] \rightarrow \mathbb{R}^{2}, \gamma(t)=\left(t^{3}, \frac{3}{2} t^{2}\right)
$$

3. Let $x, y \in \mathbb{R}^{n}$ and

$$
\gamma:[0,1] \rightarrow \mathbb{R}^{n}, \quad \gamma(t)=(1-t) x+t y
$$

be the affine path joining x and y. Prove that γ is rectifiable and that $L_{\gamma}=\|x-y\|_{2}$.
(G12.2) (Functions of bounded variation)
Let $a<b \in \mathbb{R}$ and define $B V[a, b]$ to be the set of all functions $f:[a, b] \rightarrow \mathbb{R}$ of bounded variation. Prove the following:

1. If $f \in B V[a, b]$, then f is bounded and

$$
|f(a)-f(b)| \leq V_{a}^{b}(f)
$$

2. If $f, g \in B V[a, b]$ and $\lambda, \mu \in \mathbb{R}$, then $\lambda f+\mu g, f \cdot g \in B V[a, b]$ and

$$
\begin{aligned}
V_{a}^{b}(\lambda f+\mu g) & \leq|\lambda| V_{a}^{b}(f)+|\mu| V_{a}^{b}(g) \\
V_{a}^{b}(f \cdot g) & \leq\|f\|_{\infty} V_{a}^{b}(g)+\|g\|_{\infty} V_{a}^{b}(f)
\end{aligned}
$$

3. If f is monotone, then f is of bounded variation and

$$
V_{a}^{b}(f)=|f(b)-f(a)|
$$

4. Any continuously differentiable function $f:[a, b] \rightarrow \mathbb{R}$ is of bounded variation and $V_{a}^{b}(f)=\int_{a}^{b}\left|f^{\prime}(t)\right| d t$.

(G12.3) (Arc length in polar coordinates)

Consider the following path

$$
\gamma:[\alpha, \beta] \rightarrow \mathbb{R}^{2}, \gamma(\varphi)=r(\varphi) \cdot\binom{\cos \varphi}{\sin \varphi}
$$

where $r:[\alpha, \beta] \rightarrow[0, \infty)$ is continuously differentiable.

1. Prove that for any r, γ is rectifiable and its arc length is

$$
L_{\gamma}=\int_{\alpha}^{\beta} \sqrt{(r(\varphi))^{2}+\left(r^{\prime}(\varphi)\right)^{2}} d \varphi
$$

2. Let $r:[-\pi, \pi] \rightarrow[0, \infty), r(\varphi)=1+\cos \varphi$. For this choice of r, prove that γ is closed (that is, $\gamma(-\pi)=\gamma(\pi))$ and that γ is injective on $[-\pi, \pi)$. (This means that γ is a Jordan curve).
3. Let γ be as above, and compute the arc length of γ.
