Fachbereich Mathematik
Prof. Dr. W. Trebels
Dr. V. Gregoriades
Dr. A. Linshaw

17-06-2010

10th Exercise Sheet Analysis II (engl.) Summer Semester 2010

(G10.1)

Consider the set $A:=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}-1=0\right\}$ and $\left(x_{0}, y_{0}\right) \in A$. Give conditions for the pair $\left(x_{0}, y_{0}\right)$ under which there is an open set W with $x_{0} \in W$ and a differentiable function $\varphi: W \rightarrow \mathbb{R}$ such that $\varphi\left(x_{0}\right)=y_{0}$ and $(x, \varphi(x)) \in A$ for all $x \in W$. Show that for any suitable pair $\left(x_{0}, y_{0}\right)$ the corresponding open set W can be chosen to be the interval $(-1,1)$ but it cannot be chosen so that $(-1,1) \varsubsetneqq W$ (i.e., the segment $(-1,1)$ is a proper subset of W). Also show that for different values of y_{0} we have different functions $\varphi:(-1,1) \rightarrow \mathbb{R}$.

(G10.2)

Define the function $F(x, y, z)=x^{3} z^{2}-z^{3} y x$ for $(x, y, z) \in \mathbb{R}^{3}$.

1. Prove that there is an open set $W \subseteq \mathbb{R}^{2}$ such that $(1,1) \in W$ and a differentiable function $f: W \rightarrow \mathbb{R}$ such that $f(1,1)=1$ and $F(x, y, f(x, y))=0$ for all $(x, y) \in W$. Compute the partial derivatives $\frac{\partial f}{\partial x}(1,1)$ and $\frac{\partial f}{\partial y}(1,1)$.
2. Prove that there is a differentiable function $g: \mathbb{R} \rightarrow \mathbb{R}^{2}: g=\left(g_{1}, g_{2}\right)$ such that $F\left(x, g_{1}(x), g_{2}(x)\right)=0$ for all $x \in \mathbb{R}$. Is this function g unique?

(G10.3)

(Simple Zeros of Polynomials)
Suppose that $a=\left(a_{0}, \ldots, a_{n}\right), p: \mathbb{R} \rightarrow \mathbb{R}, \quad p(x)=\sum_{k=0}^{n} a_{k} x^{k}$ is a polynomial of degree $n \geq 1$ and $x_{0} \in \mathbb{R}$ is a simple zero of p.
Given $b=\left(b_{0}, b_{1}, \ldots, b_{n}\right) \in \mathbb{R}^{n+1}$ we define

$$
p_{b}: \mathbb{R} \rightarrow \mathbb{R}, \quad p_{b}(x):=\sum_{k=0}^{n} b_{k} x^{k} .
$$

1. Show that for b sufficiently near a the polynomial p_{b} has a unique simple zero $\varphi(b)$ near the simple zero x_{0} of p_{a}. Show that the function φ defined in this way is continuously differentiable near a.
2. Prove the following: If p possesses exactly n different zeros, then the polynomials p_{b} with b sufficiently near a also have n different zeros.
