Fachbereich Mathematik
Prof. Dr. W. Trebels
Dr. V. Gregoriades
Dr. A. Linshaw

9th Exercise Sheet Analysis II (engl.)
 Summer Semester 2010

(G9.1)
Let the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by

$$
f(x, y)= \begin{cases}\frac{x y^{3}}{\left(x^{2}+y^{2}\right)^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { otherwise }\end{cases}
$$

(a) Prove that the function $I: \mathbb{R} \rightarrow \mathbb{R}, I(y)=\int_{0}^{1} f(x, y) d x$ is differentiable and calculate I^{\prime}.
(b) Define $I^{*}: \mathbb{R} \rightarrow \mathbb{R}, I^{*}(y)=\int_{0}^{1} \frac{\partial f}{\partial y}(x, y) d x$ and calculate $I^{*}(0)$.
(c) Remark that $I^{\prime}(0) \neq I^{*}(0)$. Compare this with Theorem VII.6.1, and give an explanation.
(G9.2)
Let $U \subseteq \mathbb{R}$ be open, let $J \subseteq \mathbb{R}$ be a compact interval, and let $f: J \times U \rightarrow \mathbb{R}$ be continuous and continuously partial differentiable with respect to the second variable. Let $\alpha, \beta: U \rightarrow \mathbb{R}$ be differentiable on U and suppose that $\alpha(U), \beta(U) \subseteq J$. Let

$$
I: U \rightarrow \mathbb{R}, \quad I(y)=\int_{\alpha(y)}^{\beta(y)} f(x, y) d x .
$$

Prove that I is differentiable on U and for all $y \in U$,

$$
I^{\prime}(y)=\int_{\alpha(y)}^{\beta(y)} \partial_{2} f(x, y) d x+\beta^{\prime}(y) f(\beta(y), y)-\alpha^{\prime}(y) f(\alpha(y), y)
$$

Hint. Consider the function $\Phi(u, v, y)=\int_{u}^{v} f(x, y) d x$ with $u, v \in J$ and $y \in U$, remark that $I(y)=\Phi(\alpha(y), \beta(y), y)$ and differentiate I.

(G9.3)

We say that two open sets $U, V \subseteq \mathbb{R}^{n}$ are diffeomorphic if there exists a diffeomorphism $f: U \rightarrow V$; (see Definition 1.1 Chap. VIII).

1. Prove that every two non-empty open intervals I and J of \mathbb{R} are diffeomorphic.
2. Prove that \mathbb{R} is differomorphic with $(0,1)$.
3. Is \mathbb{R} diffeomorphic with $(0,1) \cup(1,2)$?
4. Define $F: \mathbb{R}^{2} \rightarrow \mathbb{R}: F(x, y)=y^{2}+y+3 x+1$. In which points $x \in \mathbb{R}$ can we solve the equation $F(x, y)=0$ with respect to y as a differentiable function of x using only the definition?
