Fachbereich Mathematik
Prof. Dr. W. Trebels
Dr. V. Gregoriades
Dr. A. Linshaw

6th Exercise Sheet Analysis II (engl.)
 Summer Semester 2010

(G6.1)

Prove Corollary 2.10 Chap. VII:
Let $U \subseteq \mathbb{R}^{n}$ be an open set such that for any two elements $x, y \in U$ there exist points $x=z_{0}, z_{1}, \ldots, z_{l}=y$ such that $\overline{z_{k-1} z_{k}} \subseteq U$ for all $k=1, \ldots, l$. Let $f: U \rightarrow \mathbb{R}$ be differentiable. Then f is constant if and only if $\operatorname{grad} f(x)=0$ holds for all $x \in U$.
(G6.2)
Define the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ as follows: $f(x, y)=\frac{x^{3} y-x y^{3}}{x^{2}+y^{2}}$ if $(x, y) \neq(0,0)$ and $f(0,0)=0$. Prove that $f \in C^{1}\left(\mathbb{R}^{2}, \mathbb{R}\right)$, the partial derivatives $f_{x y}$ and $f_{y x}$ exist everywhere in \mathbb{R}^{2} and are continuous on $\mathbb{R}^{2} \backslash\{(0,0)\}$, but $f_{x y}(0,0)=1$ and $f_{y x}(0,0)=-1$. (This is example 3.1 Chap. VII).

(G6.3)

Let $A=\left(a_{i j}\right)_{i, j=1, \ldots, n}$ be a symmetric real $n \times n$-matrix and let

$$
F: \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad F(x)=x^{T} A x=\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}
$$

We saw in Example 1.3 Chap. VII that $F^{\prime}(x)=(2 A x)^{T}$. Compute the Hessian of F.

