Fachbereich Mathematik Prof. Dr. W. Trebels Dr. V. Gregoriades Dr. A. Linshaw

06-05-2010

4th Exercise Sheet Analysis II (engl.) Summer Semester 2010

(G4.1) Consider the metric spaces $([0, \infty), d_1)$, where d_1 is the discrete metric, and $([0, \infty), d_2)$, where $d_2(x, y) = |y - x|$. Let $f : [0, \infty) \to [0, \infty)$ be the function f(x) = x. Prove that $[0, \infty)$ is bounded in $([0, \infty), d_1)$, that f is uniformly continuous when considered as a function between the metric spaces $([0, \infty), d_1)$ and $([0, \infty), d_2)$, and that $f([0, \infty))$ is unbounded in $([0, \infty), d_2)$. Conclude that in general uniformly continuous functions do not preserve boundedness.

Consider the inverse function $f^{-1}: [0, \infty) \to [0, \infty), f^{-1}(x) = x$. Is f^{-1} continuous when considered as a function between the metric spaces $([0, \infty), d_2)$ and $([0, \infty), d_1)$?

(G4.2)

For $0 , define <math>\ell^p$ to be the set of sequences $x = (x_n)_{n \in \mathbb{N}}$ such that $\sum_{n=1}^{\infty} |x_n|^p$ converges.

- 1. Prove that for real numbers $a, b \ge 0$ and $0 , we have <math>(a + b)^p \le a^p + b^p$.
- 2. Show that the function $d_p(x,y) = \sum_{n=1}^{\infty} |x_n y_n|^p$ defines a metric on ℓ^p .
- 3. Define $||x||_p = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p}$. Does this define a norm on ℓ^p ?

(G4.3) Consider the vector space $(C[0,1], \|\cdot\|_{\infty})$ of continuous functions $f: [0,1] \to \mathbb{R}$ equipped with the supremum norm. For $n \in \mathbb{N}$ let $P_n \subset C[0,1]$ be the finite dimensional linear subspace of polynomials of degree less than or equal to n. We then call $p_b \in P_n$ a polynomial of best approximation to $f \in C[0,1]$ if

$$||f - p_b||_{\infty} = \inf\{||f - p||_{\infty} : p \in P_n\}.$$

- 1. Prove that any polynomial $p_b \in P_n$ of best approximation to f satisfies $||p_b||_{\infty} \leq 2||f||_{\infty}$.
- 2. Prove that each $f \in C[0, 1]$ possesses a polynomial $p_b \in P_n$ of best approximation.