Fachbereich Mathematik Prof. Dr. W. Trebels Dr. V. Gregoriades Dr. A. Linshaw

29-04-2010

2rd Exercise Sheet Analysis II (engl.) Summer Semester 2010

(G2.1)

- 1. For $x, y \in \mathbb{R}$, define the following functions : $d_1(x, y) = (x y)^2$, $d_2(x, y) = \sqrt{|x y|}$, $d_3(x, y) = |x^2 y^2|$, $d_4(x, y) = |x 2y|$, and $d_5 = \frac{|x y|}{1 + |x y|}$. Which of these functions defines a metric on \mathbb{R} ?
- 2. Sketch the unit ball centered at (0,0) with respect to the norms $\|\cdot\|_1$, $\|\cdot\|_2$, and $\|\cdot\|_{\infty}$.
- 3. By modifying one of the above norms, find a norm on \mathbb{R}^2 for which this unit ball is a rectangle. Find another norm for which this unit ball is an ellipse.

(G2.2)

Let (X, d) be a metric space, and let $E \subset X$ be a subset. Recall that $p \in X$ is called an accumulation point of E if every neighborhood of p contains infinitely many points of E (or equivalently, one point of $E \setminus \{p\}$).

- 1. Prove that these two definitions are equivalent.
- 2. Construct a bounded subset of \mathbb{R} with exactly three accumulation points.

(G2.3)

Let $f : \mathbb{R} \to \mathbb{C}$ be jump continuous on $[-\pi, \pi]$ and 2π -periodic.

1. Show that for any $j, k \in \mathbb{Z}$, $\widehat{e^{-ijx}f_k} = \widehat{f}_{k+j}$. (In other words, the kth Fourier coefficient of $e^{-ijx}f(x)$ coincides with the (k+j)th Fourier coefficient of f(x).

- 2. Show that the Fourier coefficient $\widehat{f^{(j)}}_k$ of the *j*th derivative $f^{(j)}$ is given by $(ik)^j \hat{f}_k$.
- 3. Let L > 0 be a real number. A function $g : \mathbb{R} \to \mathbb{C}$ is called *L*-periodic if g(x + L) = g(x) for all $x \in \mathbb{R}$. To define a Fourier series for g, let $\tilde{g}(x) = g(\frac{L}{2\pi}x)$. Show that \tilde{g} is 2π -periodic, and that $\tilde{g}_k = \frac{1}{L} \int_{-L/2}^{L/2} g(x) e^{-ik\frac{2\pi}{L}x} dx$.