Fachbereich Mathematik
Prof. Dr. W. Trebels
Dr. V. Gregoriades
Dr. A. Linshaw

2rd Exercise Sheet Analysis II (engl.)
 Summer Semester 2010

(G2.1)

1. For $x, y \in \mathbb{R}$, define the following functions : $d_{1}(x, y)=(x-y)^{2}, d_{2}(x, y)=\sqrt{|x-y|}$, $d_{3}(x, y)=\left|x^{2}-y^{2}\right|, d_{4}(x, y)=|x-2 y|$, and $d_{5}=\frac{|x-y|}{1+|x-y|}$. Which of these functions defines a metric on \mathbb{R} ?
2. Sketch the unit ball centered at $(0,0)$ with respect to the norms $\|\cdot\|_{1},\|\cdot\|_{2}$, and $\|\cdot\|_{\infty}$.
3. By modifying one of the above norms, find a norm on \mathbb{R}^{2} for which this unit ball is a rectangle. Find another norm for which this unit ball is an ellipse.
(G2.2)
Let (X, d) be a metric space, and let $E \subset X$ be a subset. Recall that $p \in X$ is called an accumulation point of E if every neighborhood of p contains infinitely many points of E (or equivalently, one point of $E \backslash\{p\}$).
4. Prove that these two definitions are equivalent.
5. Construct a bounded subset of \mathbb{R} with exactly three accumulation points.

Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be jump continuous on $[-\pi, \pi]$ and 2π-periodic.

1. Show that for any $j, k \in \mathbb{Z}, \widehat{e^{-i j x} f_{k}}=\hat{f}_{k+j}$. (In other words, the k th Fourier coefficient of $e^{-i j x} f(x)$ coincides with the $(k+j)$ th Fourier coefficient of $f(x)$.
2. Show that the Fourier coefficient $\widehat{f^{(j)}}{ }_{k}$ of the j th derivative $f^{(j)}$ is given by $(i k)^{j} \hat{f}_{k}$.
3. Let $L>0$ be a real number. A function $g: \mathbb{R} \rightarrow \mathbb{C}$ is called L-periodic if $g(x+L)=$ $g(x)$ for all $x \in \mathbb{R}$. To define a Fourier series for g, let $\tilde{g}(x)=g\left(\frac{L}{2 \pi} x\right)$. Show that \tilde{g} is 2π-periodic, and that $\tilde{g}_{k}=\frac{1}{L} \int_{-L / 2}^{L / 2} g(x) e^{-i k \frac{2 \pi}{L} x} d x$.
