Fachbereich Mathematik
Prof. Dr. W. Trebels
Dr. V. Gregoriades
Dr. A. Linshaw

22-04-2010

2nd Exercise Sheet Analysis II (engl.) Summer Semester 2010

(G2.1)
Examine whether the following integrals exist.

1. $I=\int_{0}^{\infty} \frac{x}{\sqrt{1+x^{3}}} d x$.
2. $B(p, q)=\int_{0}^{1} t^{p-1} \cdot(1-t)^{q-1} d t$; where $p, q \in \mathbb{C}$ with $\operatorname{Re}(p), \operatorname{Re}(q)>0$ (see Example 4.10 Chap. 5).
(G2.2)
3. Suppose that we are given a 2π-periodic function $f: \mathbb{R} \rightarrow \mathbb{R}$ which satisfies $f(x)=|x|$ for all $x \in[-\pi, \pi]$. Compute the Fourier series of f.
4. (Fourier coefficients of a shifted function)

Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be Riemann integrable on $[-\pi, \pi]$ and 2π-periodic. Define for any $h \in \mathbb{R}$ the shifted function $\tau_{h} f: \mathbb{R} \rightarrow \mathbb{C}, \quad \tau_{h} f(x)=f(x+h)$. Prove that the Fourier coefficients ${\widehat{\tau_{h} f}}_{k}$ of $\tau_{h} f$ are given by: ${\widehat{\tau_{h} f}}_{k}=e^{i k h} \hat{f}_{k}$ for every $k \in \mathbb{Z}$.

(G2.3)

We give the following definition. Suppose that A, X are sets such that $A \subseteq X$. We define the function $\chi_{A}: X \rightarrow\{0,1\}: \chi_{A}(x)=1$ if $x \in A$ and $\chi_{A}(x)=0$ if $x \notin A$. The function χ_{A} is the characteristic function of A.

For all naturals $n \geq 2$ we define the interval $A_{n}:=\left[\sum_{k=1}^{n-1} \frac{1}{k}, \sum_{k=1}^{n} \frac{1}{k}\right)$ and the function $f:[1, \infty) \rightarrow \mathbb{R}: f(x)=\sum_{n=1}^{\infty}(-1)^{n} \cdot \chi_{A_{n}}(x)$. Prove that (a) for all $x>1$ there is some n_{0} such that $f(t)=\sum_{k=1}^{n_{0}}(-1)^{k} \cdot \chi_{A_{k}}(t)$ for all $t \in[1, x]$ and so the series $\sum_{n=1}^{\infty}(-1)^{n} \cdot \chi_{A_{n}}$ converges to f uniformly on each fixed interval $[1, x] ;(\mathrm{b})$ the function f is jump continuous and integrable on $[1, \infty)$ and (c) the function f is not absolutely integrable on $[1, \infty)$.

Below we give the graph of f.

