Fachbereich Mathematik Prof. Dr. W. Trebels Dr. V. Gregoriades Dr. A. Linshaw

15-04-2010

1st Exercise Sheet Analysis II (engl.) Summer Semester 2010

(G1.1)

Compute the following integrals.

1. $\int_{0}^{\sqrt{\pi}} 2x \cdot \cos(x^{2}) dx$
2. $\int_{1}^{e} \frac{x}{x+1} dx$
3. $\int_{0}^{1/2} \frac{1}{x^{2}-1} dx$

(G1.2)

1. Give the example of a differentiable function $f : \mathbb{R} \to \mathbb{R}$ which is not periodic but f' is periodic.

Hint. One may start by considering the function sin(x).

2. Suppose that $g: [0,1] \to \mathbb{R}$ is a jump continuous function which is continuous at 0 and g(0) = 0. Prove that

$$\lim_{x \to 0^+} \frac{1}{x} \cdot \int_0^x g(t)dt = 0.$$

(G1.3)

- 1. Define the function $F : \mathbb{R} \to \mathbb{R}$ by $F(x) = \int_0^{x^2} \sin(1+t)dt$, $x \in \mathbb{R}$. Explain why F is differentiable and compute F'.
- 2. Define the function $F : [0,1] \to \mathbb{R}$ by $F(x) = \int_0^x 1 + \sin(\sin(t))dt$, $x \in [0,1]$. Prove that F is strictly increasing and compute the number $(F^{-1})'(0)$. Hint. Do not try to compute F^{-1} .