Fachbereich Mathematik Prof. Dr. Streicher Dr. Sergiy Nesenenko Pavol Safarik

SS 2010 27.-31.05.10

7. Übungsblatt zur "Mathematik II für Inf, WInf"

Gruppenübung

Aufgabe G24 (Grundlegende Definitionen)

Betrachten Sie die folgenden Teilmenge von $\mathbb R$ bzw. $\mathbb R^2$:

$$M_{1} := \mathbb{R} , \qquad M_{2} := \emptyset , \qquad M_{3} := [a,b) ,$$

$$M_{4} := \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\} ,$$

$$M_{5} := \mathbb{S} := \left\{ (x,y) \in \mathbb{R}^{2} \mid x^{2} + y^{2} = 1 \right\} ,$$

$$M_{6} := \left\{ (x,y) \in \mathbb{R}^{2} \mid |x+y| < 1, \quad |x-1| < 2 \right\} ,$$

$$M_{7} := \left\{ (x,y) \in \mathbb{R}^{2} \mid x+y = 1, \quad (x-1)^{2} + y^{2} < 4 \right\} ,$$

$$M_{8} := \left\{ (x,y) \in \mathbb{R}^{2} \mid 0 \le y \le \sin x \right\} .$$

(a) Kreuzen Sie diejenigen Eigenschaften an, die für die ensprechende Menge zutreffen.

	M_1	M_2	M_3	M_4	M_5	M_6	M_7	M_7	M_8
offen									
abgeschlossen									
kompakt									

- (b) Geben Sie jeweils den Rand, das Innere und die abgeschlossene Hülle.
- (c) Geben Sie alle Häufungspunkte der jeweiligen Menge an.

Hinweis: Es ist oft hilfreich sich die Menge durch eine Skizze zu veranschaulichen.

Lösung: $M_1 = \mathbb{R}$ ist offen und abgeschlossen, aber nicht kompakt. Es gilt $\mathbb{R}^{\circ} = \overline{\mathbb{R}} = \mathbb{R}$ und $\partial \mathbb{R} = \emptyset$. Jeder Punkt $x \in \mathbb{R}$ ist Häufungspunkt von \mathbb{R} .

 $M_2 = \emptyset$ ist offen, abgeschlossen und kompakt. Es gilt $\emptyset^{\circ} = \overline{\emptyset} = \partial \emptyset = \emptyset$. Die Menge besitzt keinen Häufungspunkt.

 $M_3 = [a, b)$ ist weder offen noch abgeschlossen noch kompakt. Es gilt $[a, b)^{\circ} = (a, b)$, $\overline{[a, b)} = [a, b]$ und $\partial[a, b) = \{a, b\}$. Jeder Punkt $x \in [a, b]$ ist ein Häufungspunkt der Menge.

 M_4 ist weder offen noch abgeschlossen noch kompakt. Es gilt $M_4^{\circ} = \emptyset$ und $\overline{M_4} = \partial M_4 = M_4 \cup \{0\}$. Der einzige Häufungspunkt der Menge ist 0.

 $M_5 = \mathbb{S}$ ist abgeschlossen und kompakt, aber nicht offen. Es gilt $\mathbb{S}^{\circ} = \emptyset$ und $\overline{\mathbb{S}} = \partial \mathbb{S} = \mathbb{S}$. Jeder Punkt $(x, y) \in \mathbb{S}$ ist ein Häufungspunkt von \mathbb{S} .

 M_6 ist offen, nicht abgeschlossen und nicht kompakt. Somit gilt $M_6^{\circ} = M_6$. Weiter gilt

$$\overline{M_6} = \{(x, y) \in \mathbb{R}^2 \mid |x + y| \le 1, \quad |x - 1| \le 2\}$$

und damit folgt

$$\partial M_6 = \{(x,y) \in \mathbb{R}^2 \mid |x+y| = 1, |x-1| \le 2\} \cup \{(x,y) \in \mathbb{R}^2 \mid |x+y| \le 1, |x-1| = 2\}.$$

Jeder Punkt der abgeschlossenen Hülle $\overline{M_6}$ ist ein Häufungspunkt von M_6 . M_7 ist weder offen noch abgeschlossen noch kompakt. Es gilt $M_7^{\circ} = \emptyset$ und

$$\overline{M_7} = \partial M_7 = \{(x, y) \in \mathbb{R}^2 \mid x + y = 1, \quad (x - 1)^2 + y^2 \le 4\}.$$

Jeder Punkt der abgeschlossenen Hülle $\overline{M_7}$ ist Häufungspunkt von M_7 . M_8 ist nicht offen, abgeschlossen und nicht kompakt. Es gilt

$$M_8^{\circ} = \{(x, y) \in \mathbb{R}^2 \mid 0 < y < \sin x\}$$

und mit $\overline{M_8} = M_8$ folgt

$$\partial M_8 = \{(x,y) \mid 0 = y \le \sin x\} \cup \{(x,y) \in \mathbb{R}^2 \mid 0 \le y = \sin x\}.$$

Jeder Punkt des Abschlusses ist ein Häufungspunkt von M_8 .

Aufgabe G25 (Einheitskugel)

Es sei V ein Vektorraum und $||\cdot||$ eine gegebene Norm. Dann ist $\overline{B_V} = \{x \in V : ||x|| \le 1\}$ die Einheitskugel in V.

- (a) Skizzieren Sie die Einheitskugel bezüglich der Normen $||\cdot||_1, ||\cdot||_2$ und $||\cdot||_{\infty}$ im \mathbb{R}^2 .
- (b) Zeigen Sie, dass die Einheitskugel abgeschlossen ist.

Lösung:

(a) Auf http://www.mathematik.uni-marburg.de/~stemmler/software/pball/applet.php gibt es ein schönes Java Applet zur Veranschaulichung der Einheitskugel in verschiedenen Normen. Unbedingt anschauen und ausprobieren.

Die Einheitskugel für die Norm $||\cdot||_1$ ist das Quadrat im \mathbb{R}^2 , welches seine Eckpunkte in den Punkten (1,0), (-1,0), (0,1) und (0,-1) besitzt. In der euklidischen Norm beschreibt die Einheitskugel eine Kreisscheibe um (0,0) mit dem Radius 1. Die Einheitskugel der Maximumsnorm $||\cdot||_{\infty}$ im \mathbb{R}^2 ist das Quadrat, welches seine Eckpunkte in (1,1), (1,-1), (-1,1) und (-1,-1) hat.

Auch unter http://de.wikipedia.org/wiki/Einheitskugel sind die drei gefragten Bilder zu sehen.

(b) Eine Menge ist abgeschlossen, wenn ihr Komplement offen ist. Es ist also zu zeigen, dass $\overline{B_X}^C = \{x \in V : ||x|| > 1\}$ offen ist, d.h., dass $\overline{B_V}^C = \overline{B_V}^C = \{x \in \overline{B_V} : \exists \varepsilon > 0 \ U_{\varepsilon}(x) \subseteq \overline{B_V}\}$. Setze $\varepsilon = ||x|| - 1$.

Aufgabe G26 (Normabschätzungen)

- (a) Zeigen Sie, dass die in Beispiel VIII.1.3 beschriebenen Normen $||\cdot||_1$ und $||\cdot||_{\infty}$ im \mathbb{R}^n die Bedingungen (N1), (N2) und (N3) erfüllen.
- (b) Zeigen Sie, dass die folgenden Abschätzungen für beliebige $x \in \mathbb{R}^n$ zwischen diesen Normen gelten:

$$||\cdot||_{\infty} \le ||\cdot||_1 \le n \cdot ||\cdot||_{\infty}$$
 und $||\cdot||_{\infty} \le ||\cdot||_2 \le \sqrt{n} \cdot ||\cdot||_{\infty}$

Lösung:

(a) i. $||x||_1$

N1)
$$||x||_1 = \underbrace{|x_1|}_{\geq 0} + \dots + \underbrace{|x_n|}_{\geq 0} \geq 0$$

 $x = 0 \Rightarrow ||x||_1 = 0$; $||\overrightarrow{0}||_1 = |0| + \dots + |0| = 0$
 $||x||_1 = 0 \Rightarrow x = 0$; $|x_1| + \dots + |x_n| = 0 \Rightarrow |x_i| = 0 \,\forall i \in \{0, \dots, n\} \Rightarrow x = 0$.

N2)
$$||\lambda \cdot x||_1 = \sum_{i=1}^n |\lambda x_i| = |\lambda| \cdot \sum_{i=1}^n |x_i| = |\lambda| \cdot ||x||_1$$

N3)
$$||x+y||_1 = \sum_{i=1}^n |x_i + y_i| \le \sum_{i=1}^n |x_i| + \sum_{i=1}^n |y_i| = ||x||_1 + ||y||_1$$

ii. $||\cdot||_{\infty}$

N1)
$$||x||_{\infty} \ge 0$$
 Klar, da $|x_i| \ge 0$.
 $x = 0 \Rightarrow ||x||_{\infty} = 0$: $\max_{1 \le i \le n} |0| = 0$.
 $||x||_{\infty} = 0 \Rightarrow x = 0$: $||x||_{\infty} = \max_{1 \le i \le n} |x_i| = 0 \Rightarrow x = 0$

N2)
$$||\lambda \cdot x||_{\infty} = \max_{1 \le i \le n} |\lambda \cdot x_i| = |\lambda| \cdot \max_{1 \le i \le n} |x_i| = |\lambda| \cdot ||x||_{\infty}$$

N3)
$$||x+y||_{\infty} = \max_{1 \le i \le n} |x_i+y_i| \le \max_{1 \le i \le n} (|x_i|+|y_i|) \le \max_{1 \le i \le n} |x_i| + \max_{1 \le i \le n} |y_i| = ||x||_{\infty} + ||x||_{\infty}$$

- (b) i. $||\cdot||_{\infty} \le ||\cdot||_1 \le n \cdot ||\cdot||_{\infty}$:
 - 1. Teil: $||\cdot||_{\infty} \le ||\cdot||_{1}$ $Z.z.: \max_{1 \le i \le n} |x_{i}| \le |x_{1}| + \ldots + |x_{n}|$ Sei OBdA $\max_{1 \le i \le n} |x_{i}| = |x_{j}| \text{ mit } 1 \le j \le n.$ Dann ist $||x||_{1} = |x_{j}| + \sum_{\substack{i=1 \ i \ne j}}^{n} |x_{i}| \ge |x_{j}| = \max_{1 \le i \le n} |x_{i}| = ||x||_{\infty}.$
 - 2. Teil: $||\cdot||_1 \le n \cdot ||\cdot||_{\infty}$ Sei OBdA $\max_{1 \le i \le n} |x_i| = |x_j|$ mit $1 \le j \le n$. Dann gilt $|x_j| \ge |x_1|, \dots, |x_j| \ge |x_n|$. Somit gilt dann $n \cdot |x_j| \ge \sum_{i=1}^n |x_i|$.
 - ii. $||\cdot||_{\infty} \le ||\cdot||_2 \le \sqrt{n} \cdot ||\cdot||_{\infty}$:
 - 1. Teil: $||\cdot||_{\infty} \leq ||\cdot||_2$ Sei OBdA $\max_{1\leq i\leq n} |x_i| = |x_j|$ mit $1\leq j\leq n$. Dann ist $|x_j| = \sqrt{x_j^2} \leq \sqrt{x_j^2 + \sum_{\substack{i=1\\i\neq j}}^n x_i^2}$
 - 2. Teil: $||\cdot||_2 \leq \sqrt{n} \cdot ||\cdot||_{\infty}$ Sei OBdA $\max_{1 \leq i \leq n} |x_i| = |x_j|$ mit $1 \leq j \leq n$. Dann gilt $|x_j| \geq |x_1|, \dots, |x_j| \geq |x_n|$. Somit gilt dann $||x||_2 = \sqrt{\sum_{i=1}^n x_i^2} \leq \sqrt{x_j^2 \cdot n} = \sqrt{x_j^2} \cdot \sqrt{n} = \sqrt{n} \cdot |x_j| = \sqrt{n} \cdot ||x||_{\infty}$.

Aufgabe G27 (Abschluss einer Menge)

Es gibt eine alternative Beschreibung des Abschlusses einer Menge: Der Abschluss \overline{M} einer Menge M ist die Menge aller möglichen Grenzwerte von Folgen mit Elementen in M. Formal bedeutet dies:

$$a \in \overline{M} \quad \Leftrightarrow \quad \exists (x_k)_{k \in \mathbb{N}}, x_k \in M \ a = \lim_{k \to \infty} x_k$$

Zeigen Sie, dass diese Definition äquivalent zu der Definition der Vorlesung ist.

Lösung: Wir zeigen zunächst die Implikation \Leftarrow . Angenommen a sei der Grenzwert einer Folge von Elementen x_k aus M. Ist dabei $a \in M$ so folgt $a \in \overline{M}$ trivial. Es sei nun $a \neq M$. Da nach Definition der Konvergenz für jedes $\varepsilon > 0$ ein N existiert, so dass $||a - x_k|| < \varepsilon$ für alle $k \geq N$ und $a \neq x_k \in M$, so gilt auch $a \in \overline{M}$ nach der Definition des Skripts, da $\overline{M} = \{x \in \mathbb{R}^n | \forall \varepsilon > 0 \exists y \in M | |x - y|| < \varepsilon\}$.

Zum Nachweis der Implikation \Rightarrow betrachten wir ein beliebiges Element $a \in \overline{M}$. Gilt dabei $a \in \mathring{M}$, so erfüllt die konstante Folge $x_k = a$ die Bedingungen des Satzes. Wegen $\overline{M} = \mathring{M} \cup \partial M$ bleibt der Fall $a \in \partial M$ zu untersuchen. Dann ist für alle $\varepsilon > 0$ der Durchschnitt $M \cap U_{\varepsilon}(a)$ nach Definition von ∂M jeweils nichtleer. Wir können dann eine Folge von Elementen $x_k \in M \cap U_{\varepsilon}(a)$ wählen, welche offensichtlich gegen a konvergiert.

Hausübung

Aufgabe H25 (Normkonvergenz)

(3 Punkte)

Sei $||\cdot||$ eine Norm auf \mathbb{R}^n . Zeigen Sie, daß eine Folge genau dann bezüglich $||\cdot||$ konvergiert, wenn sie bezüglich $||\cdot||_{\infty}$ konvergiert.

Lösung: Aus Satz VIII.1.11 wissen wir, daß es zu der gegebenen Norm $||\cdot||$ zwei positive Konstanten c und d gibt mit $c||\cdot||_{\infty} < ||\cdot|| < d||\cdot||_{\infty}$.

 \Rightarrow Angenommen eine Folge (x_k) im \mathbb{R}^n konvergiert gegen $a \in \mathbb{R}$ bzgl. $||\cdot||$:

$$\forall \varepsilon > 0 \ \exists N \ \forall k \ge N \ ||a - x_k|| < \varepsilon.$$

Wegen $c||\cdot||_{\infty} < ||\cdot||$ folgt

$$\forall \delta > 0 \,\exists N \,\forall k \ge N \,||a - x_k||_{\infty} < \frac{\delta}{c}.\tag{1}$$

Um zu zeigen, daß

$$\forall \varepsilon > 0 \ \exists N \ \forall k \ge N \ ||a - x_k||_{\infty} < \varepsilon,$$

wählen wir ein beliebiges ε . Da (1) für alle δ gilt, gilt (1) insbesondere für $\delta = c\varepsilon > 0$ und somit folgt die Konvergenz von (x_k) gegen a bzgl. $||\cdot||_{\infty}$.

 \Leftarrow Angenommen eine Folge konvergiert bzgl. $||\cdot||_{\infty}$:

$$\forall \varepsilon > 0 \,\exists N \,\forall k \geq N \,||a - x_k||_{\infty} < \varepsilon.$$

Wegen $d||\cdot||_{\infty} > ||\cdot||$ folgt

$$\forall \varepsilon > 0 \ \exists N \ \forall k \ge N \ ||a - x_k|| < d\varepsilon$$

und somit (wie oben) auch die Konvergenz von (x_k) gegen a bzgl. $||\cdot||$.

Aufgabe H26 (Stetigkeit)

(3 Punkte)

Untersuchen Sie die folgenden drei Funktionen $f, g, h : \mathbb{R}^2 \to \mathbb{R}$ auf Stetigkeit:

$$f(x,y) := \begin{cases} \frac{xy^2}{x^4 + y^2} & \text{falls } (x,y) \neq (0,0), \\ 0 & \text{falls } (x,y) = (0,0), \end{cases}$$

$$g(x,y) := \begin{cases} \frac{xy^2}{x^2 + y^4} & \text{falls } (x,y) \neq (0,0), \\ 0 & \text{falls } (x,y) = (0,0), \end{cases}$$

$$h(x,y) := \begin{cases} y + x \cos(1/y) & \text{falls } y \neq 0, \\ 0 & \text{falls } y = 0. \end{cases}$$

Lösung:

f: Auf der Menge $\mathbb{R}^2 \setminus \{(0,0)\}$ ist f durch Produkte und Summen stetiger Funktionen gegeben und somit selbst stetig. Wir zeigen, dass f auch im Punkt (0,0) stetig ist. Sei hierzu $(x_n,y_n)_{n\in\mathbb{N}}$ eine Folge in \mathbb{R}^2 , die gegen den Punkt (0,0) konvergiert. Dann gilt

$$0 \le |f(x_n, y_n)| = \frac{|x_n y_n^2|}{x_n^4 + y_n^2} \le \frac{|x_n|y_n^2}{y_n^2} = |x_n|.$$

Da die rechte Seite der Ungleichung gegen Null konvergiert folgt $\lim_n f(x_n, y_n) = 0 = f(0, 0)$.

g: Analog zu f ist die Funktion g auf $\mathbb{R}^2 \setminus \{(0,0)\}$ stetig. Im Punkt (0,0) ist g jedoch unstetig. Um dies zu zeigen wählen wir die konkrete Nullfolge $(x_n,y_n)_{n\in\mathbb{N}}$ mit $x_n:=\frac{1}{n^2}$ und $y_n:=\frac{1}{n}$. Dann gilt

$$\lim_{n \to \infty} g(x_n, y_n) = \lim_{n \to \infty} \frac{\frac{1}{n^2} \cdot (\frac{1}{n})^2}{(\frac{1}{n^2})^2 + (\frac{1}{n})^4} = \lim_{n \to \infty} \frac{1}{2} = \frac{1}{2} \neq 0 = f(0, 0) ,$$

d.h. f ist im Punkt (0,0) nicht stetig.

h: Analog zu f ist die Funktion h in jeden Punkt $(x,y) \in \mathbb{R}^2$ mit $y \neq 0$ stetig. Wir betrachten zuerst den Punkt (0,0) und zeigen, dass h dort stetig ist. Sei hierzu $(x_n,y_n)_n$ eine Folge in \mathbb{R}^2 die gegen den Punkt (0,0) konvergiert. Da der Kosinus durch -1 bzw. 1 nach unten bzw. oben beschränkt ist, gilt

$$|y_n - |x_n| \le h(x_n, y_n) \le y_n + |x_n|.$$

Weil y_n und x_n reelle Nullfolgen sind, konvergieren die linke und die rechte Seite der Ungleichungskette gegen Null. Somit gilt auch für den mittleren Teil $\lim_n h(x_n, y_n) = 0 = h(0, 0)$. Wir zeigen weiter, dass die Funktion h in jedem anderen Punkt $(x, 0) \in \mathbb{R}^2$ mit $x \neq 0$ unstetig ist. Hierzu betrachten wir konkret die Folge $(x_n, y_n)_n$ mit $x_n := x$ und $y_n := 1/(2\pi n)$. Diese Folge konvergiert dann gegen den Punkt (x, 0), aber es gilt

$$\lim_{n \to \infty} h(x_n, y_n) = \lim_{n \to \infty} \left(\frac{1}{2\pi n} + x \cos(2\pi n) \right) = \lim_{n \to \infty} \left(\frac{1}{2\pi n} + x \right) = x.$$

Wegen $\lim_n h(x_n, y_n) = x \neq 0 = h(x, 0)$ ist die Funktion h an der Stelle (x, 0) unstetig.