Fachbereich Mathematik Prof. Dr. Streicher Dr. Sergiy Nesenenko Pavol Safarik

SS 2010 28. April 2010

3. Übungsblatt zur "Mathematik II für Inf, WInf"

Gruppenübung

Aufgabe G9 (Minitest)

Es seien die folgenden Matrizen gegeben:

$$A = \begin{pmatrix} a \\ b \end{pmatrix}, \quad B = \begin{pmatrix} c & d \end{pmatrix}, \quad C = \begin{pmatrix} a & e \\ f & c \end{pmatrix}, \quad D = \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix}.$$

Welche Ausdrücke sind definiert?

\Box AD	\Box BA	$\Box A + B$	\Box D^2	\Box CA
Seien A	$\in \mathbb{R}_n^m, B \in \mathbb{R}_m^k$. Welche der fo	lgenden Glei	ichungen sind

richtig?

- $\Box \quad (AB)^T = A^T B^T$ $\Box \quad (AB)^T = B^T A$ $\Box \quad (AB)^T = B^T A^T$

Seien $A, B \in \mathbb{R}_n^n$. Welche der folgenden Gleichungen sind richtig?

- $(AB)^{-1} = A^{-1}B^{-1}$
- $\Box (AB)^{-1} = B^{-1}A^{-1}$
- $(AB)^{-1}B = A$

Aufgabe G10 (elementare Matrixumformungen)

Gegeben sei die Matrix

$$A = \begin{pmatrix} 1 & 2 \\ -4 & -5 \end{pmatrix}$$

- a) Bestimme eine Matrix $E_{21}(4) \in \mathbb{R}^2$, so dass das Produkt $E_{21}(4) \cdot A$ diejenige Matrix ist, welche aus A entsteht, indem man das 4-fache der ersten Zeile zur zweiten addiert.
- b) Bestimme eine Matrix $T_{12} \in \mathbb{R}^2$, so dass $T_{12} \cdot A$ diejenige Matrix ist, welche aus A durch Vertauschen der ersten und zweiten Zeile entsteht. (T steht hier für Transposition)

Die gewonnenen Erkenntnisse wollen wir nun etwas allgemeiner fassen:

- c) Sei $\lambda \in \mathbb{R}$ und $j, k \in \{1, ..., n\}$ mit $j \neq k$. Bestimme eine Matrix $E_{jk}(\lambda) \in \mathbb{R}_n^n$, so dass für jedes $A \in \mathbb{R}_n^n$ das Produkt $E_{jk}(\lambda) \cdot A$ diejenige Matrix ist, welche aus A entsteht indem man das λ -fache der k-ten Zeile zur j-ten Zeile addiert.
- d) Sei $j,k \in \{1,\ldots,n\}$ mit $j \neq k$. Bestimme eine Matrix $T_{jk} \in \mathbb{R}_n^n$, so dass für jedes $A \in \mathbb{R}_n^n$ das Produkt $T_{jk} \cdot A$ diejenige Matrix ist, welche aus A durch Vertauschen der j-ten und der k-ten Zeile entsteht.

e) Sei $\lambda \in \mathbb{R} \setminus \{0\}$ und $j \in \{1, ..., n\}$. Bestimme eine Matrix $D_j(\lambda) \in \mathbb{R}_n^n$, so dass für jedes $A \in \mathbb{R}_n^n$ das Produkt $D_j(\lambda) \cdot A$ diejenige Matrix ist, welche aus A durch Multiplizieren der j-ten Zeile mit λ entsteht.

Aufgabe G11 (Matrizen)

Betrachten Sie die folgenden Matrizen:

$$A := \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 3 & 2 & 1 \end{pmatrix} , \qquad B := \begin{pmatrix} 2 & 1 & 1 & 2 \\ 1 & 3 & 2 & 1 \\ 4 & 1 & 2 & 3 \end{pmatrix} , \qquad C := \begin{pmatrix} 2 & 0 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} .$$

- (a) Berechnen Sie, falls möglich, folgende Summen: A + B, A + C und B + C.
- (b) Berechnen Sie, falls möglich, folgende Produkte: A^2 , AB, BA, B^TA und B^2 .
- (c) Wie viele Operationen (Additionen, Multiplikationen) sind nötig, um die Summe zweier $n \times n$ -Matrizen zu berechnen? Wie viele Operationen sind nötig, um das Produkt von zwei $n \times n$ -Matrizen zu berechnen?

Aufgabe G12 (Lineare Abbildungen und Matrizen)

(a) Es sei $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ die lineare Abbildung, welche die Spiegelung an der Winkelhalbierenden des zweiten und vierten Quadranten beschreibt. Bestimmen Sie die zugehörige Abbildungsmatrix, d.h. ermitteln Sie diejenige Matrix A_{φ} , bezüglich der

$$\varphi \begin{pmatrix} x \\ y \end{pmatrix} = A_{\varphi} \begin{pmatrix} x \\ y \end{pmatrix}$$

für alle $(x,y)^T \in \mathbb{R}^2$ gilt.

(b) Die lineare Abbildung $\psi: \mathbb{R}^2 \to \mathbb{R}^3$ ist bestimmt durch

$$\psi\begin{pmatrix}1\\1\end{pmatrix}=\begin{pmatrix}1\\0\\-2\end{pmatrix}\qquad \text{und}\qquad \psi\begin{pmatrix}1\\2\end{pmatrix}=\begin{pmatrix}0\\1\\1\end{pmatrix}.$$

Ermitteln Sie erneut eine Matrix A_{ψ} mit

$$\psi \begin{pmatrix} x \\ y \end{pmatrix} = A_{\psi} \begin{pmatrix} x \\ y \end{pmatrix}$$

für alle $(x,y)^T \in \mathbb{R}^2$.

(c) Bestimmen Sie die zu $\psi \circ \varphi$ gehörige Abbildungsmatrix.

Hausübung

Aufgabe H9 (Vektorraum der linearen Abblidungen)

Seien V und W zwei Vektorräume über \mathbb{K} . Zeige, dass die Menge der linearen Abbildungen (Homomorphismen) Hom(V,W) zwischen V und W ein Vektorraum ist.

Hinweis: Seien $f, g \in Hom(V, W)$ und $\alpha \in \mathbb{K}$, dann gelten die folgenden Definitionen:

Definition der Addition: $f + g : (f + g)(x) := f(x) + g(x) \quad \forall x \in V.$

Definition der Skalarmultiplikation: $\alpha \cdot f : (\alpha \cdot f)(x) := \alpha \cdot f(x) \quad \forall x \in V.$

Aufgabe H10 (Lineare Abbildungen)

Kreuzen Sie diejenigen Abbildungen an, die linear sind:

- $\square \quad \phi_1: \mathbb{R}^3 \to \mathbb{R}^3, \quad \phi_1(x, y, z) := (x + y, \ x + z, \ y z)^T,$
- $\Box \quad \phi_2 : \mathbb{R}^2 \to \mathbb{R}^3, \quad \phi_2(x,y) := (x^2, y^2, x y)^T,$
- $\Box \quad \phi_3: \mathbb{R}^3 \to \mathbb{R}^4, \quad \phi_3(x, y, z) := \left(2(x + y), \ x y, \ x z, \ 2\right)^T,$
- $\square \quad \phi_4: \mathbb{R} \rightarrow \mathbb{R}^3, \quad \phi_4(x) := (0, x, 2x)^T,$
- $\square \quad \phi_5 : \mathbb{R} \rightarrow \mathbb{R}^3, \quad \phi_5(x) := \phi_1(\phi_4(x)).$

Bestimmen Sie für die linearen Abbildungen jeweils die darstellende Matrix (bzgl. der Standardbasis) und die Dimension von Kern und Bild der Abbildung.

Aufgabe H11 (lineare Abbildungen)

Betrachten Sie die Vektoren $v_1 := (1,0,0)^T$, $v_2 := (1,1,0)^T$, $v_3 := (1,1,1)^T$ und $v_4 := (3,2,1)^T$. Weiter sei $\phi : \mathbb{R}^3 \to \mathbb{R}^3$ eine lineare Abbildung mit $\phi(v_1) = (2,1,2)^T$, $\phi(v_2) = (1,2,1)^T$ und $\phi(v_3) = (3,2,1)^T$.

- (a) Zeigen Sie, dass die Vektoren v_1, v_2, v_3 linear unabhängig sind.
- (b) Bestimmen Sie die darstellende Matrix von ϕ (bzgl. der Standardbasis).
- (c) Berechnen Sie $\phi(v_4)$.

Aufgabe H12 (Vektorraum Isomorphismus)

Laut Definition VIII.3.8 heißt eine lineare Abbildung $f:V\to W$ Vektorraumisomorphismus, wenn eine lineare Abbildung $g:W\to V$ existiert mit $g\circ f=id_V$ und $f\circ g=id_W$. Vektorräume V und W heißen isomorph, wenn es einen Isomorphismus $f:V\to W$ gibt.

- (a) Zeigen Sie, dass ein Vektorraumisomorphismus immer eine bijektive Funktion ist.
- (b) Zeigen Sie, dass bijektive lineare Abbildungen Isomorphismen sind, d.h. dass die Umkehrabbildung auch wieder linear ist.

Aufgabe H13 (Matrizen)

Betrachten Sie für $\alpha \in \mathbb{R}$ die Matrix

$$A_{\alpha} := \begin{pmatrix} 1 & 2 & 1 \\ 1 & a & 2 \\ 1 & 2 & a \end{pmatrix} .$$

Bestimmen Sie in Abhängigkeit von $\alpha \in \mathbb{R}$

- (a) die Determinante $\det(A_{\alpha})$,
- (b) den Rang, den Kern und das Bild von A_{α} ,
- (c) das Inverse A_0^{-1}

und lösen Sie die Gleichungssysteme

$$A_0 x = (1, 2, 1)^T$$
 und $A_0 y = (2, 4, -1)^T$.