Fachbereich Mathematik Prof. Dr. U. Reif R. Hartmann

SS 10 31.05.2010

7. Übungsblatt zur "Mathematik II für MB"

Aufgabe 23 Aufwärmen

Bestimmen Sie das quadratische Taylor-Polynom der Funktion

$$f(x,y) = \frac{x-y}{x+y}$$

im Punkt (1,1).

Aufgabe 24 Bekannte Reihen

Stellen Sie für die folgenden Funktionen das quadratische Taylorpolynom T_3f um den angegebenen Entwicklungspunkt auf. Nutzen Sie dazu bekannte Reihenentwicklungen.

- (a) $f(x,y) := \frac{1}{1+x+y}$ um (0,0),
- (b) $f(x, y, z) := \cos(x)\sin(y)e^z$ um (0, 0, 0).

Aufgabe 25 Restglied

Sei $f(x,y) = x^y$. Bestimmen Sie das quadratische Taylorpolynom von f im Punkt (1,1). Schätzen Sie anschließend den Fehler ab, der sich bei der näherungsweisen Berechnung von $1.05^{1.02}$ unter Verwendung dieses Taylorpolynoms ergibt.

Hinweis: Verwenden Sie die verallgemeinerte Restglieddarstellung, die Sie bereits aus dem Eindimensionalen kennen:

$$R_3 f(x,y) = \sum_{l+n=3} \frac{\partial_x^l \partial_y^n f(\nu,\zeta)}{l!n!} (x - x_0)^l (y - y_0)^n$$

In diesem Falle liegt der Punkt (ν, ζ) auf der Verbindungsstrecke zwischen (x_0, y_0) und (x, y). Schätzen Sie die auftretenden Ableitungen ab unter Verwendung der Ungleichung $\ln x \le x - 1$ für $x \ge 1$.

Hausübung

Aufgabe H24 Produkte

(2+1 Punkte)

(i) Sei

$$f(x, y, z) = xy^2 z^3.$$

Stellen Sie das lineare Taylorpolynom T_2f von f im Punkt (1,2,3) auf. Berechnen Sie nun mit Hilfe von T_2f den Ausdruck $1.002 \cdot 2.003^2 \cdot 3.004^3$ näherungsweise.

(ii) Stellen Sie das kubische Taylorpolynom von

$$f(x,y) = \exp(x^2 y).$$

in (0,0) auf.

Hinweis: Verwenden Sie die Reihendarstellung von $\exp(z)$.

Aufgabe H25 Approximation

(1+1+1 Punkte)

Wir betrachten zwei Funktionen f und g, die wie folgt definiert sind:

$$f(x,y) = x^2 \sin(xy/2)$$

$$g(x,y) = x^2 - \cos(x/y).$$

- a) Berechnen Sie das quadratische Taylorpolynom von f an der Entwicklungsstelle $(1,\pi)$.
- b) Berechnen Sie das quadratische Taylorpolynom von g an der Entwicklungsstelle $(\pi, 1)$.
- c) Vergleichen Sie die Funktionswerte $f(1.1, \pi)$ und $g(\pi + 0.1, 0.8)$ mit den entsprechenden Näherungswerten aus der Taylorentwicklung. Vergleichen Sie anschließend die Funktionswerte $f(1, 4\pi)$ und g(0, 1) mit den entsprechenden Näherungswerten aus der Taylorentwicklung. Was ist passiert?

Aufgabe H26 Taylorreihen

(2+1 Punkte

Stellen Sie für die folgenden Funktionen die Taylor**reihe** um den angegebenen Entwicklungspunkt auf. Nutzen Sie dazu bekannte Reihenentwicklungen. In Aufgabenteil a) ist die Lösung zusätzlich über die partiellen Ableitungen zu bestimmen.

- (a) $f(x,y) := \frac{1}{xy}$ um (1,1),
- (b) $f(x,y) := e^{x+y-1} \text{ um } (\frac{1}{3}, \frac{2}{3}).$