Fachbereich Mathematik Prof. Dr. U. Reif R. Hartmann

SS 10 24.05.2010

6. Übungsblatt zur "Mathematik II für MB"

Aufgabe 19 Jakobi-Matrix

Berechnen Sie die Ableitungen der folgenden Funktionen:

- (a) $f: \mathbb{R}^2 \to \mathbb{R}^3$, $f(x,y) = (xy, \cosh(xy), \log(1+x^2))$
- (b) $g: \mathbb{R}^3 \to \mathbb{R}^3, \ g(x, y, z) = (x \sin(y) \cos(z), x \sin(y) \sin(z), x \cos(y))$
- (c) $H: \mathbb{R}^2 \to \mathbb{R}^2$, $H(x, y) = \nabla h(x, y)$, mit $h: \mathbb{R}^2 \to \mathbb{R}$, $h(x, y) = xy + 2x \sin(y + \pi/2) + \exp(-y) \cos(x)$.

Aufgabe 20 Kettenregel

Es seien die Funktionen f, h, G gegeben durch

$$f(x,y) = -x^2 + 2xy - y^3 \qquad (x,y) \in \mathbb{R}^2$$

$$G(\varphi) = \begin{pmatrix} \cos(\varphi) \\ \sin(\varphi) \end{pmatrix} \qquad \varphi \in \mathbb{R}$$

$$h(\varphi) = f(G(\varphi)) \qquad \varphi \in \mathbb{R}$$

a) Geben Sie die partiellen Ableitungen $f_x, f_y, f_{xx}, f_{xy}, f_{yx}, f_{yy}$ an.

Stimmen f_{xy} und f_{yx} überein?

- b) Bestimmen Sie die erste Ableitung von h mit der Kettenregel.
- c) Bestimmen Sie $h'(\varphi)$ direkt.

Aufgabe 21 Richtungsableitung

Die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ sei gegeben durch

$$f(x,y) = xy + 2x\sin(y + \pi/2) + \exp(-y)\cos(x).$$

- a) Bestimmen Sie den Gradienten $\nabla f(X_0)$ von f an der Stelle $X_0 = (0,0)$.
- b) Berechnen Sie die Richtungsableitung $\nabla_A f(X_0)$ in der Richtung A, die durch den Vektor $(-3/\sqrt{10}, 1/\sqrt{10})$ gegeben ist.
- c) Für welche Richtungen verschwindet $\nabla_B f(X_0)$, d.h. wann gilt $\nabla f(X_0)B=0$?

Aufgabe 22 Differenzierbarkeit

Sei $h: \mathbb{R}^2 \to \mathbb{R}$ definiert durch

$$h(x,y) = \begin{cases} \frac{x^3}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0). \end{cases}$$

Bestimmen Sie alle Punkte $(x,y) \in \mathbb{R}^2$, an welchen h differenzierbar ist.

Hausübung

Aufgabe H21 Gradient

(1+2 Punkte)

Für $x \neq 0$ sei $f(x, y) = \arctan(y/x)$.

- i) Bestimmen Sie den Gradienten $\nabla f(x,y)$.
- ii) Zeigen Sie: Falls $x \neq 0$ folgt $\|\nabla f(x,y)\| = 1/\|(x,y)\|$ und $\|xf_x(x,y) + yf_y(x,y)\| \leq 1$.

Aufgabe H22 Kettenregel II

(1+1+2 Punkte)

- (a) Sei $f: \mathbb{R}^3 \to \mathbb{R}$, $f(x, y, z) = e^z y + x^2 y^2$ and $g: \mathbb{R} \to \mathbb{R}^3$, $g(t) = (2t^2, \sin t, e^t)$. Berechnen Sie die Ableitung von $f \circ g$ auf zwei verschiedene Arten:
 - i. Direkt durch Berechnung von h(t) = f(g(t)) und Differenzieren von h.
 - ii. Durch Anwenden der Kettenregel.
- (b) Betrachten Sie die Abbildung $h: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}, h(x_1, x_2, ..., x_n) = \frac{1}{\sqrt{\sum_{i=1}^n x_i^2}}$

Berechnen Sie den Gradienten von h, in dem Sie h darstellen als Verkettung von Funktionen, deren Ableitung Sie bereits kennen.

Aufgabe H23 Differenzierbarkeit II

(2+2+2 Punkte)

Sei $f: \mathbb{R}^2 \to \mathbb{R}$ definiert durch

$$f(x,y) := \begin{cases} \sqrt{x^2 + y^2}, & \text{falls } y > 0, \\ -\sqrt{x^2 + y^2}, & \text{falls } y < 0, \\ x, & \text{falls } y = 0. \end{cases}$$

- (i) Bestimmen Sie die Jacobi-Matrix Df(x,y) für alle $(x,y) \in \mathbb{R}^2$ mit $y \neq 0$.
- (ii) Bestimmen Sie alle $v \in \mathbb{R}^2 \setminus \{(0,0)\}$ für die die Richtungsableitung $\nabla_v f(0,0)$ existiert.
- (iii) Ist f differenzierbar in (0,0)?

Hinweis: Betrachten Sie die Nullfolge definiert durch $h_n := \left(\frac{(-1)^n}{n}, \frac{1}{n}\right), n \in \mathbb{N}.$