Fachbereich Mathematik Prof. R. Hemmecke Yong He 04.12.2008

4. Übung zu Lineare Algebra f. Ph.

Aufgabe 9 – Minitest:

In dieser Aufgabe sei V der reelle Vektorraum \mathbb{R}^n , $n \in \mathbb{N}$ mit n > 0. Welche der folgenden Aussagen ist richtig? Begründen Sie Ihre Antwort.

- 1) Seien $u, v \in V$ mit $u, v \neq 0$. Dann ist die lineare Hülle $W := lin(\{u, v\})$ ein Unterraum von V.
- 2) Es gibt insgesamt n+1 erzeugende Systeme von V.
- 3) Die Menge $\{2008\}$ ist ein erzeugendes System von \mathbb{R} .
- 4) Jedes lineare inhomogene Gleichungssystem in V besitzt eine Lösung.
- 5) Jedes lineare homogene Gleichungssystem, das mindesten zwei Lösungen in V hat, hat unendlich viele.
- 6) 0 ist eine Lösung von jedem linearen homogenen Gleichungssystem in V.
- 7) Die Menge aller Lösungen jedes linearen inhomogenen Gleichungssystems ist ein Untervektorraum in V.
- 8) Ein aus n Variablen und n Gleichungen bestehendes lineares Gleichungssystem kann höchstens n lineare unabhängige Lösungen besitzen.

Lösung:

- 1) Richtig.
- 2) Falsch, es gibt unendlich viele erzeugende Systeme von V.
- 3) Richtig.
- 4) Falsch.
- 5) Richtig.
- 6) Richtig.
- 7) Falsch. Dies gilt nur für die homogenen Fälle.
- 8) Richtig.

Aufgabe 10 – Lineare Gleichungssysteme:

Sei $(\mathbb{K}, +, \cdot, 0, 1)$ ein Körper und $\alpha_1, \alpha_2, \alpha, \beta \in \mathbb{K}$.

- 1) Wir betrachten die Gleichung $\alpha x = \beta$ in \mathbb{K} .
 - a) Für welche α, β besitzt die Gleichung eine eindeutige Lösung?
 - b) Für welche α, β besitzt die Gleichung keine Lösung?
 - c) Für welche α, β besitzt die Gleichung unendlich viele Lösungen?

Hinweis: Es gibt $2^2 = 4$ Fallunterscheidungen.

- 2) Betrachten wir die Gleichung $\alpha_1 x_1 + \alpha_2 x_2 = \beta$ in \mathbb{K}^2
 - a) Für welche $\alpha_1, \alpha_2, \beta$ besitzt die Gleichung eine eindeutige Lösung?
 - b) Für welche $\alpha_1, \alpha_2, \beta$ besitzt die Gleichung keine Lösung?
 - c) Für welche $\alpha_1, \alpha_2, \beta$ besitzt die Gleichung unendlich viele Lösungen?
 - d) Sei $\mathbb{K}^2 = \mathbb{R}^2$. Skizzieren Sie jeweils die Lösungsmengen.

Hinweis: Es gibt $2^3 = 8$ Fallunterscheidungen.

Lösung:

- 1) Betrachten wir die Gleichung $\alpha x = \beta$ in \mathbb{K} .
 - a) Eine eindeutige Lösung: Wenn $\alpha \neq 0$ wir erhalten $x = \frac{\beta}{\alpha}$.
 - b) Wenn $\alpha = 0$ und $\beta \neq 0$ besitzt die Gleichung keine Lösung.
 - c) Wenn $\alpha=0$ und $\beta=0$ besitzt die Gleichung unendlich viele Lösungen, nämlich $\mathbb{R}.$
- 2) Betrachten wir die Gleichung $\alpha_1 x_1 + \alpha_2 x_2 = \beta$ in \mathbb{K}^2
 - a) Zwei Variable und eine Gleichung. Daher falls sie eine lösung besitzt, so ist die Lösung nicht eindeutig.
 - b) Wenn $\alpha_1 = \alpha_2 = 0, \beta \neq 0$, besitzt die Gleichung keine Lösung.
 - c) Wenn $\alpha_1 \neq 0$, für beliebiges $x_2 = \lambda \in \mathbb{K}$ setzte $x_1 = -\frac{\alpha_2}{\alpha_1}\lambda + \frac{\beta}{\alpha_1}$. Dann ist die Lösungsmenge

$$\left\{ \begin{pmatrix} -\frac{\alpha_2}{\alpha_1}\lambda + \frac{\beta}{\alpha_1} \\ \lambda \end{pmatrix} : \lambda \in \mathbb{K} \right\}$$

eine gerade in \mathbb{K}^2 mit Richtungsvektor $(\frac{\alpha_2}{\alpha_1}, 1)^t$, die durch den Punkt $(\frac{\beta}{\alpha_1}, 0)^t$ geht. Falls zusätzlich $\beta = 0$ geht diese Gerade durch den Ursprung.

Wenn $\alpha_1 = 0$ und $\alpha_2 \neq 0$ dann ist $x_2 = \frac{\beta}{\alpha_2}$. Die Lösungsmenge

$$\left\{ \begin{pmatrix} \lambda \\ \frac{\beta}{\alpha_2} \end{pmatrix} : \lambda \in \mathbb{K} \right\}$$

ist eine Gerade in \mathbb{K}^2 paralell zu $(1,0)^t$, die durch den Punkt $(0,\frac{\beta}{\alpha_2})^t$ geht. Falls zusätzlich $\beta=0$ so die Lösungsmenge die x_1 -Achse.

Wenn $\alpha_1 = \alpha_2 = \beta = 0$, so ist das \mathbb{K}^2 die Lösungsmenge.

Aufgabe 11 – Basis:

Im \mathbb{R}^3 betrachten wir die Untervektorräume

$$U := \ln\{(1, 0, -1)^t, (-1, 1, 0)^t\}, \quad V := \{(x_1, x_2, x_3)^t \in \mathbb{R}^3 : x_2 + x_3 = 0\}$$

- 1) Bestimmen Sie jeweils eine Basis von $U, V, U \cap V, U + V$.
- 2) Welche Dimension hat U + V.

Lösung:

- 1) Es ist zu sehen, dass $V = \ln\{(0, 1, 0)^t, (0, 0, 1)^t\}$. Ferner $(0, 1, -1)^t \in U \cap V$ und $\lambda \cdot (0, 1, -1)^t \in U \cap V$. $U + V = \mathbb{R}^3$.
- 2) $\dim(U) = 2$, $\dim(V) = 2$, $\dim(U \cap V) = 1$. Nach Dimensionsformel für Untervektorräume gilt es: $\dim(U + V) = 3$.

Hausaufgabe 10 – Untervektorräume:

Es sei $V = \mathbb{Q}^4$ (mit Zeilenvektoren als Elemente),

$$M := \{(1, 2, 3, 4), (2, 0, 1, -1), (1, 1, 1, 1), (1, 0, 0, -1)\} \subseteq V,$$

U = lin(M) der von den Vektoren in M erzeugte Untervektorraum von V sowie v = (1, -1, 0, 2) und w = (1, 0, 0, 2). Überprüfen Sie, ob v und w in U enthalten sind.

Hausaufgabe 11 – Lineare Gleichungssysteme:

(i) Lösen Sie das folgende lineare Gleichungssystem über \mathbb{R} mit Hilfe des Gauß-Algorithmus. Für welche Werte von $a \in \mathbb{R}$ hat es keine, genau eine bzw. unendlich viele Lösungen?

- (ii) Es sei ein inhomogenes lineares Gleichungssystem über \mathbb{R} mit k Gleichungen und in k+1 Variablen gegeben. Wie kann sich die Anzahl der Lösungen dieses Systems ändern, wenn man eine Gleichung hinzunimmt?
- (iii) Was ändert sich, wenn das System jetzt homogen ist und eine homogene Gleichung hinzukommt?

Hausaufgabe 12 – Lineare Unabhängigkeit:

Für welche $\alpha, \beta \in \mathbb{R}$ sind die folgenden Vektoren $u = (\alpha^2, 1, \beta), v = (\beta, -1, 1)$ linear unabhängig?