Introduction to Mathematical Logic

SS 2010, Exercise Sheet #13

Recall from the lecture the following lemma of Vaught:

Let K be an infinite set and T a consistent theory subpotent to K such that all models of T are infinite and any two models of T equipotent to K are isomorphic. Then T is complete.

EXERCISE 44:

A linear order "<" on a set X is dense if, to any x < y, there are u, v, w with u < x < v < y < w. One can show that any two countable dense linear orders are isomorphic.

- a) Define the theory DLO of dense linear orders. Are your axioms recursively enumerable? Explain!
- b) Given an example of a model of DLO. Are there countable models of DLO? Finite models? Why?
- c) Conclude that DLO is complete!

Recall Gödel's Incompleteness Theorem. In 1948, Julia Robinson presented a formula $\varphi[X]$ in the language of fields such that $\mathbb{Q} \models \varphi[i_x]$ for every $x \in \mathbb{N}$ and $\mathbb{Q} \models \neg \varphi[i_x]$ for every $x \in \mathbb{Q} \setminus \mathbb{N}$.

- d) Prove or disprove: $Th(\mathbb{Q})$ is complete.
- e)* Prove or disprove: \mathbb{Q} admits a recursively enumerable axiomatization in the language of fields.

EXERCISE 45:

- a) Suppose that every set can be well-ordered; i.e. to every X, there is a set $R \subseteq X \times X$ which constitutes a well-ordering relation. Conclude that this implies the Axiom of Choice.
- b) Let X, Y denote metric spaces[†] and $f : X \to Y$ an arbitrary function. Show that, for every $n \in \mathbb{N}$, the following is an open subset of X:

 $\left\{x \in X \mid \exists m \in \mathbb{N} \; \forall y, z \in X : \left(d(x, y) < 1/m \land d(x, z) < 1/m\right) \Rightarrow d\left(f(y), f(z)\right) < 1/n\right\} \;.$

- c) Conclude that the set $\{x \in X : f \text{ continuous at } x\}$ is in Borel class Π_2 , i.e. a G_δ subset of X. Give an example of a function $f : X \to Y$ where this set is not open nor closed.
- d) Recall the non-commutativity of ordinal arithmetic and simplify the following ordinal expressions: $1 + \omega + \omega^2 + \omega^3 + \ldots + \omega^n + 1$, $1 + \omega + \omega^2 + \omega^3 + \ldots + \omega^{\omega} + 1$. What could $\omega - 1$ mean?

EXERCISE 46:

a) For fixed n, determine the number (i.e. the cardinality of the set) of functions $f : \{0, 1\}^n \to \{0, 1\}$.

b) For $x_1, \ldots, x_n \in \{0, 1\}$, consider the formula $\varphi_{x_1, \ldots, x_n}[X_1, \ldots, X_n] := \bigwedge_{i=1}^n \begin{cases} X_i : x_i = 1 \\ \neg X_i : x_i = 0 \end{cases}$ Show that $\varphi_{x_1, \ldots, x_n}[X_1, \ldots, X_n]$ is a formula in the language of propositional logic with variables X_1, \ldots, X_n such that, for every valuation $v : \{X_1, \ldots, X_n\} \to \{0, 1\}$, it holds: $v \models \varphi_{x_1, \ldots, x_n}$ iff $v(X_i) = x_i$ for all $i = 1, \ldots, n$.

- c) Prove that, to every function $f : \{0, 1\}^n \to \{0, 1\}, \psi := \bigvee_{\bar{x} \in f^{-1}[1]} \varphi_{\bar{x}}$ is a formula in the language of propositional logic such that, for every valuation v, it holds: $v \models \psi$ iff $f(v(X_1), \dots, v(X_n)) = 1$.
- d) Prove that the number of formulas of length ℓ with n variables in the language of propositional logic is at most (n + c)^ℓ for some constant c.
- e)* Verify that ψ from c) has length at most C^n for some constant C. Show that (for n sufficiently large) there are functions $f : \{0, 1\}^n \to \{0, 1\}$ which cannot be expressed as formulas of length polynomial in n; and that in fact 'most' functions require formulas of length at least c^n for some constant c.

*Bonus exercise [†]you may assume $X = Y = \mathbb{R}$ with metric d(x, y) = |x - y| if you like