Introduction to Mathematical Logic

SS 2010, Exercise Sheet #12

EXERCISE 40:

- a) Specify a consistent † first-order theory which is not complete.
- b) Clearify the relation between completeness and the claim made by the completeness theorem.

EXERCISE 41:

- a) Let $\mathcal{A} = \{A_1, \dots, A_n\}$ denote a finite set of first-order sentences of the theory of fields. Prove: If \mathcal{A} is valid in all fields of characteristic zero, then there exists an integer P such that \mathcal{A} is valid in all fields of characteristic $p \ge P$.
- b) Prove: The theory of fields of characteristic 0 is not finitely axiomatizable.

EXERCISE 42:

Let T denote a first-order theory whose language has binary relation symbol "<" as only nonlogical symbol.

- a) Suppose that *every* well-ordered set is a model of T. Consider the extended theory T' with additional constant symbols $c_1, c_2, \ldots, c_n, \ldots$ and axioms " $c_{n+1} < c_n$ " for every integer n. Show that each finitely axiomatized part of T' has a model.
- b) Prove that T cannot have *precisely* the well-ordered sets as models.

EXERCISE 43:

- a) Let φ be a sentence in the language of fields. Prove that the following are equivalent:
 - i) φ is valid in the field \mathbb{C} of complex numbers.
 - ii) φ is valid in all algebraically closed fields of characteristic 0.
 - iii) φ is valid in some algebraically closed field of characteristic 0.
 - iv) There is some integer P such that, for all primes $p \ge P$, φ is valid in some algebraically closed field of characteristic p.
 - v) There is some $P \in \mathbb{N}$ such that, for all primes $p \ge P$, φ is valid in all algebraically closed fields of characteristic p.
- b*) Informally describe a computer algorithm which, given a system of multivariate polynomial equations " $p_j(z_1, \ldots, z_n) = 0$ " and inequalities " $q_\ell(z_1, \ldots, z_n) \neq 0$ " with integer coefficients, reports whether this system has some solution $(z_1, \ldots, z_n) \in \mathbb{C}^n$ or not.

[†]not necessarily provably

^{*}Bonus exercise