Introduction to Mathematical Logic

SS 2010, Exercise Sheet \#11

EXERCISE 37:

a) Prove that $A \Rightarrow(B \Rightarrow C)$ is a tautological consequence of $(A \Rightarrow B) \Rightarrow C$ but not vice versa.
b) Let B, A_{1}, \ldots, A_{n} be formulas. Prove:
B is a tautological consequence of $\left\{A_{1}, \ldots, A_{n}\right\}$ iff " $\bigwedge_{i} A_{i} \Rightarrow B$ " is a tautology.
c) Let A, B, C denote formulas and \mathcal{A} a set of formulas. Prove:
i) If $\mathcal{A} \models A$, then $\mathcal{A} \models B \vee A$
iii) If $\mathcal{A} \models A \vee(B \vee C)$, then $\mathcal{A} \models(A \vee B) \vee C$
ii) If $\mathcal{A} \models A \vee A$, then $\mathcal{A} \models A$
iv) If $\mathcal{A} \models A \vee B$ and $\mathcal{A} \models \neg A \vee C$, then $\mathcal{A} \models B \vee C$
v) $\models \neg A \vee A$
vi) If $\mathcal{A} \models A$ and $\mathcal{A} \models A \Rightarrow B$, then $\mathcal{A} \models B$.

EXERCISE 38:

Let $G=(V, E)$ denote a graph on a (not necessarily finite) vertex set V and E a set of unordered edges $\{u, v\}, u, v \in V$. A subgraph of G is a graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ with $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$. For any natural number k, we say that G is k-colorable if its vertices can be painted with k colours such that any two adjacent ones receive different colours:

$$
\exists c: V \rightarrow\{1,2, \ldots, k\} \quad \text { such that } \quad\{u, v\} \in E \Rightarrow c(u) \neq c(v) .
$$

a) Prove that the graph on the back side is 4-colourable but not 3-colourable.
b) Let $G=(V, E)$ denote a graph, k an integer, and consider the set of variables $\left\{x_{u, i}: u \in\right.$ $V, 1 \leq i \leq k\}$. Furthermore consider the set Φ consisting of the following formulas:
$\bigvee_{i=1}^{k} x_{u, i}: u \in V ; \quad \neg x_{u, i} \vee \neg x_{u, j}: u \in V, 1 \leq i<j \leq k ; \quad \neg x_{u, i} \vee \neg x_{w, i}:\{u, w\} \in E, 1 \leq i \leq k$
Show that G is k-colourable iff Φ is satisfiable.
c) Prove that G is k-colourable iff each of its finite subgraphs is k-colourable.

EXERCISE 39:

Let \mathcal{A} denote a set of formulas and A, B, C formulas. Prove:
b) If $\mathcal{A} \vdash A$, then $\mathcal{A} \vdash \neg \neg A$. Conversely, if $\mathcal{A} \vdash \neg \neg A$ then $\mathcal{A} \vdash A$.
c) If $\mathcal{A} \vdash A$ and $\mathcal{A} \vdash A \Rightarrow B$, then $\mathcal{A} \vdash B$. (Modus ponens)
d) If $\mathcal{A} \vdash(A \vee B) \vee C$, then $\mathcal{A} \vdash A \vee(B \vee C)$.
e) If $\mathcal{A} \vdash \neg A \vee C$ and $\mathcal{A} \vdash \neg B \vee C$, then $\mathcal{A} \vdash \neg(A \vee B) \vee C$.

