Introduction to Mathematical Logic

SS 2010, Exercise Sheet #11

EXERCISE 37:

- a) Prove that $A \Rightarrow (B \Rightarrow C)$ is a tautological consequence of $(A \Rightarrow B) \Rightarrow C$ but not vice versa.
- b) Let B, A_1, \ldots, A_n be formulas. Prove: B is a tautological consequence of $\{A_1, \ldots, A_n\}$ iff " $\bigwedge_i A_i \Rightarrow B$ " is a tautology.
- c) Let A, B, C denote formulas and A a set of formulas. Prove:

 - i) If $A \models A$, then $A \models B \lor A$ iii) If $A \models A \lor (B \lor C)$, then $A \models (A \lor B) \lor C$

 - ii) If $A \models A \lor A$, then $A \models A$ iv) If $A \models A \lor B$ and $A \models \neg A \lor C$, then $A \models B \lor C$
 - \mathbf{v}) $\models \neg A \lor A$

vi) If $A \models A$ and $A \models A \Rightarrow B$, then $A \models B$.

EXERCISE 38:

Let G = (V, E) denote a graph on a (not necessarily finite) vertex set V and E a set of unordered edges $\{u,v\}$, $u,v\in V$. A subgraph of G is a graph G'=(V',E') with $V'\subseteq V$ and $E'\subseteq E$. For any natural number k, we say that G is k-colorable if its vertices can be painted with k colours such that any two adjacent ones receive different colours:

$$\exists c: V \to \{1,2,\ldots,k\} \qquad \text{such that} \qquad \{u,v\} \in E \Rightarrow c(u) \neq c(v) \ \ .$$

- a) Prove that the graph on the back side is 4-colourable but not 3-colourable.
- b) Let G = (V, E) denote a graph, k an integer, and consider the set of variables $\{x_{u,i} : u \in A\}$ $V, 1 \le i \le k$. Furthermore consider the set Φ consisting of the following formulas:

$$\bigvee_{i=1}^{k} x_{u,i} : u \in V; \quad \neg x_{u,i} \lor \neg x_{u,j} : u \in V, 1 \le i < j \le k; \quad \neg x_{u,i} \lor \neg x_{w,i} : \{u, w\} \in E, 1 \le i \le k$$

Show that G is k-colourable iff Φ is satisfiable.

c) Prove that G is k-colourable iff each of its finite subgraphs is k-colourable.

EXERCISE 39:

Let A denote a set of formulas and A, B, C formulas. Prove:

- b) If $A \vdash A$, then $A \vdash \neg \neg A$. Conversely, if $A \vdash \neg \neg A$ then $A \vdash A$.
- c) If $A \vdash A$ and $A \vdash A \Rightarrow B$, then $A \vdash B$. (Modus ponens)
- d) If $A \vdash (A \lor B) \lor C$, then $A \vdash A \lor (B \lor C)$.
- e) If $A \vdash \neg A \lor C$ and $A \vdash \neg B \lor C$, then $A \vdash \neg (A \lor B) \lor C$.

