Introduction to Mathematical Logic

SS 2010, Exercise Sheet #10

EXERCISE 34:

Let *L* denote a language and \mathcal{M} a structure of *L*. Prove the following:

- a) A sentence " $A \wedge B$ " is valid in \mathcal{M} iff both "A" and "B" are valid in \mathcal{M} .
- b) A sentence " $\forall v A[v]$ " is valid in \mathcal{M} iff for each $a \in M$, the sentence " $A[i_a]$ " of $L_{\mathcal{M}}$ is valid in \mathcal{M} .
- c) A sentence " $A \Leftrightarrow B$ " is valid in \mathcal{M} iff either both "A" and "B" are valid in \mathcal{M} or none is valid in \mathcal{M} .
- d) Let $A[v_1, \ldots, v_n]$ be a formula and t_1, \ldots, t_n variable-free terms of L. Prove that the following two formulas are valid in \mathcal{M} :

 $(\forall v_1 \forall v_2 \cdots \forall v_n : A) \Rightarrow A[t_1, \dots, t_n] \qquad A[t_1, \dots, t_n] \Rightarrow \exists v_1 \exists v_2 \cdots \exists v_n : A$

EXERCISE 35:

A field \mathbb{K} is algebraically closed if every nonconstant polynomial over \mathbb{K} has a root in \mathbb{K} . The characteristic of a field \mathbb{K} is the least integer $p \ge 2$ such that $1 + 1 + \cdots + 1 = 0$ (*p*-fold). If such *p* exists, it must be a prime; otherwise \mathbb{K} is said to be of characteristic 0.

- a) Prove Freshman Exponentiation: $(x + y)^p = x^p + y^p$ in fields of characteristic $p \ge 2$.
- b) Prove that every algebraically closed field is infinite, as is every field of characteristic 0.
- c) Define a first-order theory whose models are precisely the fields.
- d) Fix p. Define a first-order theory F(p) whose models are precisely the fields of characteristic p.
- e) Define a first-order theory F(0) whose models are precisely the fields of characteristic 0.
- f) Define a first-order theory ACF whose models are precisely the algebraically closed fields.
- g) Show that there exists an uncountable and a countable model of ACF. (Hint: Löwenheim-Skolem)

EXERCISE 36:

An ordered field is a field \mathbb{K} equipped with an additional order relation "<" that complies with the field operations and constants.

A complete ordered is an ordered field \mathbb{K} such that every nonempty subset of \mathbb{K} which has an lower bound also has a greatest lower bound; recall Section 1.1 from the lecture.

- a) Define a first-order theory whose models are precisely the ordered fields. Give an example of a complete ordered field.
- b)[†] Let \mathbb{K} denote a complete ordered field. Prove that there exists an injective homomorphism of ordered fields $h : \mathbb{R} \to \mathbb{K}$, i.e. such that h(0) = 0, h(1) = 1, h(x + y) = h(x) + h(y), $h(x \cdot y) = h(x) \cdot h(y)$, and h(x) < h(y) whenever x < y.
- c) Can you define a first-order theory whose models are precisely the complete ordered fields? Prove!

^{*}Recall that the lecture and exercise session intended for June 21 and 22 have moved.