Introduction to Mathematical Logic

SS 2010, Exercise Sheet #8

EXERCISE 29:

- a) Define a term F in three parameters such that for all x, y, z it holds $F(\emptyset, x, y) = x$ and, in case $z \neq \emptyset$, F(z, x, y) = y.
- b) Prove formally: $y = \emptyset \Leftrightarrow \forall z : z \notin y$.
- c) Use "∈, ∨, ¬, ∃" and the abbreviations from the lecture to formally express the predicate *P*(*f*) that "all elements of *f* are ordered pairs".

EXERCISE 30:

- a) Cook up a formal predicate P(x) expressing that "x has precisely one element".
- b) Let (X_i)_{i∈I} be a family of sets such that, for every i ∈ I, X_i has precisely one element.
 Prove, avoiding the axiom of choice: ∏_{i∈I} X_i ≠ Ø.

Recall from Exercise 19e) the following two claims:

- i) To every injective mapping $f : A \to B$, there exists a (necessarily surjective) mapping $g : B \to A$ with $g \circ f = id_A$.
- ii) To every surjective mapping $g: B \to A$, there exists a (necessarily injective) mapping $f: A \to B$ with $g \circ f = id_A$.

EXERCISE 31:

- a) Express both i) and ii) formally.(You may introduce and use abbreviations.)
- b) Which claim of i),ii) can be proven without the axiom of choice? Give such a proof!
- c) Prove that the other claim implies the axiom of choice. Hint: consider $g:(i, x) \mapsto i$.