Introduction to Mathematical Logic

SS 2010, Exercise Sheet #7

EXERCISE 26:

In topology, a G_{δ} -set (in X) is one of the form $\bigcap_{n \in \omega} Y_n$ with $Y_n \subseteq X$ open for every $n \in \omega$.

- a) Which Borel class (Σ_{α} or Π_{α} and for which α) do G_{δ} -sets belong to?
- b) Prove that the Borel class you specified in a) is in general the least possible to contain G_{δ} -sets.
- c) Fix k ∈ N.
 Generalize a+b) to describe all sets in Σ_k (all sets in Π_k) in terms of open or closed sets.
- d)* Let α denote some *un* countable ordinal. What is Σ_{α} ?
- e) Prove that Σ_{α} is closed under countable unions. Which countable operation is Π_{α} closed under?

EXERCISE 27:

Consider the following subset C of \mathbb{R} :

$$\left\{\sum_{n=1}^{\infty} a_n 3^{-n} : a_n \in \{0, 2\}\right\}$$
.

- a) What is the cardinality of C?
- b) Which (least) Borel class does C belong to?
- c)* Prove your claim from b).

EXERCISE 28:

- b) For every x, y, we define the ordered pair $(x, y) := \{\{x\}, \{x, y\}\}$. Prove that $(x, y) = (x', y') \Leftrightarrow x = x' \land y = y'$ holds.
- c) Inductively extend the definition, claim, and proof in b) from pairs to *n*-tuples.
- d) What does n range over in c)? Which axioms does your proof rely on?

^{*}Bonus exercise