Introduction to Mathematical Logic

SS 2010, Exercise Sheet \#6

EXERCISE 24:

a) Construct a subset of \mathbb{R} which is not a countable union of closed sets, i.e. not in $\boldsymbol{\Sigma}_{2}$.
b)* Prove your claim from a).
c) Determine the 'ground level' $\Sigma_{1} \cap \Pi_{1}$ of the Borel Hierarchy of subsets of \mathbb{R}^{n}.
d) Describe the Borel Hierarchy of subsets of \mathbb{Q}^{n}.

Start by determining Σ_{2}.
What happens to Corollary 3.16?

EXERCISE 25:

Fix some sufficiently large ordinal λ and consider the set of all open-closed intervals

$$
(\alpha, \beta]:=\quad\{\gamma \text { ordinal, } \alpha<\gamma \leq \beta\}, \quad \alpha, \beta \leq \lambda
$$

a) Prove that the intersection of two open-closed intervals is again an open-closed interval. How about the intersection of denumerably many open-closed intervals?
b) Let I be a set and, for each $i \in I, U_{i}$ some open-closed interval. Suppose that $\bigcup_{i \in I} U_{i}=$ $(0, \omega]$. Prove that there exists a finite subset $J \subseteq I$ such that $\bigcup_{i \in J} U_{i}=(0, \omega]$.

In topological terms, this means that $(0, \omega]$ is compact (with respect to the order topology).
c) Prove that $(0, \lambda]$ is compact for every ordinal λ. Hint: transfinite induction.
d) Is $(0, \lambda)$ always compact as well (and if yes, why not)?

[^0]
[^0]: *Bonus exercise

