Introduction to Mathematical Logic

SS 2010, Exercise Sheet #6

EXERCISE 24:

- a) Construct a subset of \mathbb{R} which is not a countable union of closed sets, i.e. not in Σ_2 .
- b)* Prove your claim from a).
- c) Determine the 'ground level' $\Sigma_1 \cap \Pi_1$ of the Borel Hierarchy of subsets of \mathbb{R}^n .
- d) Describe the Borel Hierarchy of subsets of Qⁿ.
 Start by determining Σ₂.
 What happens to Corollary 3.16?

EXERCISE 25:

Fix some sufficiently large ordinal λ and consider the set of all open-closed intervals

 $(\alpha,\beta] := \{\gamma \text{ ordinal, } \alpha < \gamma \le \beta\}, \qquad \alpha,\beta \le \lambda$

- a) Prove that the intersection of two open-closed intervals is again an open-closed interval. How about the intersection of denumerably many open-closed intervals?
- b) Let I be a set and, for each $i \in I$, U_i some open-closed interval. Suppose that $\bigcup_{i \in I} U_i = (0, \omega]$. Prove that there exists a <u>finite</u> subset $J \subseteq I$ such that $\bigcup_{i \in J} U_i = (0, \omega]$.

In topological terms, this means that $(0, \omega]$ is compact (with respect to the order topology).

- c) Prove that $(0, \lambda]$ is compact for every ordinal λ . Hint: transfinite induction.
- d) Is $(0, \lambda)$ always compact as well (and if yes, why not)?

^{*}Bonus exercise