Introduction to Mathematical Logic

SS 2010, Exercise Sheet #5

EXERCISE 21:

- a) Prove that 2^{ω} is equipotent with $2^{\omega} \setminus \{\{n\} : n \in \omega\}$.
- b) Prove that \mathbb{R} is equipotent with (-1, 1), with [0, 1], with \mathbb{R}^2 , and with \mathbb{R}^{ω} .
- c)* Which of the bijections are continuous; which ones cannot be, and why?
- d) How many (total) continuous real functions are there?
- e) How many partial continuous real functions are there?

EXERCISE 22:

The lecture showed that at least one string $\bar{x} \in \{0,1\}^n$ cannot be compressed below length *n*. Prove: To every $n \in \mathbb{N}$, at least half of the strings $\bar{x} \in \{0,1\}^n$ cannot be compressed below n-1.

EXERCISE 23:

We identify *predicates* with 0-1-valued functions; e.g., " $x \le y$ ": $\mathbb{N}^2 \to \mathbb{N}$, $(x, y) \mapsto 1$ for $x \le y$ and $(x, y) \mapsto 0$ else. Prove that the following functions are recursive:

- a) Addition $A : \mathbb{N}^2 \to \mathbb{N}, (x, y) \mapsto x + y$.
- b) Positive subtraction $(x, y) \mapsto \max(0, x y)$.
- c) Multiplication.
- d) Predicates "x = 0"; " $x \le y$ ", "x < y", " $x \ne y$ ", and "x = y"; e) $\bar{x} \mapsto \begin{cases} f(\bar{x}) : P(\bar{x}) \\ g(\bar{x}) : \neg P(\bar{x}) \end{cases}$ for recursive functions $f, g : \mathbb{N}^n \to \mathbb{N}$ and recursive predicate P.
- f) $x \operatorname{rem}(y+1)$ (division with remainder),
- g) $n \mapsto n$ -th prime number

^{*}Bonus exercise