Introduction to Mathematical Logic

SS 2010, Exercise Sheet \#5

EXERCISE 21:

a) Prove that 2^{ω} is equipotent with $2^{\omega} \backslash\{\{n\}: n \in \omega\}$.
b) Prove that \mathbb{R} is equipotent with $(-1,1)$, with $[0,1]$, with \mathbb{R}^{2}, and with \mathbb{R}^{ω}.
c)* Which of the bijections are continuous; which ones cannot be, and why?
d) How many (total) continuous real functions are there?
e) How many partial continuous real functions are there?

EXERCISE 22:

The lecture showed that at least one string $\bar{x} \in\{0,1\}^{n}$ cannot be compressed below length n. Prove: To every $n \in \mathbb{N}$, at least half of the strings $\bar{x} \in\{0,1\}^{n}$ cannot be compressed below $n-1$.

EXERCISE 23:

We identify predicates with $0-1$-valued functions; e.g., $" x \leq y ": \mathbb{N}^{2} \rightarrow \mathbb{N},(x, y) \mapsto 1$ for $x \leq y$ and $(x, y) \mapsto 0$ else.
Prove that the following functions are recursive:
a) Addition $A: \mathbb{N}^{2} \rightarrow \mathbb{N},(x, y) \mapsto x+y$.
b) Positive subtraction $(x, y) \mapsto \max (0, x-y)$.
c) Multiplication.
d) Predicates $" x=0 " ; \quad " x \leq y ", \quad " x<y ", \quad " x \neq y ", \quad$ and $\quad " x=y "$;
e) $\bar{x} \mapsto\left\{\begin{array}{rlr}f(\bar{x}): & P(\bar{x}) \\ g(\bar{x}) & : \neg P(\bar{x})\end{array} \quad\right.$ for recursive functions $f, g: \mathbb{N}^{n} \rightarrow \mathbb{N}$ and recursive predicate P.
f) $x \operatorname{rem}(y+1) \quad$ (division with remainder),
g) $n \mapsto n$-th prime number

[^0]
[^0]: *Bonus exercise

