Introduction to Mathematical Logic

SS 2010, Exercise Sheet #3

EXERCISE 16:

The lecture defined ordinal addition and multiplication by constructing new well-orders from given ones. Here, we shall pursue an alternative approach similar to Exercise 7a+d+e) based on *transfinite recursion*: For ordinals α , β , let

$$A(\alpha, 0) := \alpha$$

$$A(\alpha, \beta^{+}) := A(\alpha, \beta)^{+}$$

$$A(\alpha, \beta) := \sup_{\gamma < \beta} A(\alpha, \gamma) \quad \text{in case } \beta \text{ is a limit ordinal}$$
(1)

- a) Prove that this defines an ordinal $A(\alpha, \beta)$ for every pair (α, β) of ordinals.
- b) Prove that *A* is associative.
- c) One can show that, for every fixed ordinal α , the mapping $\beta \mapsto \alpha + \beta$ on ordinals is *continuous* in the sense that it holds $\alpha + \beta = \sup_{\gamma < \beta} \alpha + \gamma$. Conclude $A(\alpha, \beta) = \alpha + \beta$ for all ordinals α, β .
- d) Prove or disprove: The mapping $\alpha \mapsto \alpha + \beta$ is continuous for every ordinal β . Hint: Exercise 15a).
- e) Use ordinal addition and multiplication to define ordinal exponentiation $E(\alpha,\beta)$ such that, for natural numbers *n* and *m*, E(n,m) coincides with n^m .
- f) Show that $E(2, \omega) = \omega < \omega \cdot \omega = E(\omega, 2)$.

EXERCISE 17:

- a) Show that $\mathbb{N} := \{0, 1, 2, ...\}$ is equipotent to $N := \{1, 2, ...\}$ as well as to the sets $2\mathbb{N}$ of even numbers and $\mathbb{P} = \{2, 3, 5, 7, 11, 13, 17, ...\}$ of prime numbers.
- b) Prove that *N* is equipotent to $N \times N$. Hint: $(x, y) \mapsto 2^{x-1} \cdot (2y-1)$.
- c) Let *X*, *Y* denote sets. Prove that $(X \cup Y) \uplus (X \cap Y)$ is equipotent to $X \uplus Y$.
- d) Prove that the powerset $\mathcal{P}(X) = \{Y : Y \subseteq X\}$ is equipotent to $2^X = \{f : X \to \{0, 1\}\}$.
- e) Prove that X is *not* equipotent to 2^X . Hint: For $F: X \to 2^X$, consider g(x) := 1 - F(x)(x).