Introduction to Mathematical Logic

SS 2010, Exercise Sheet #2

EXERCISE 11:

- a) Give three distinct examples of ordinals. Prove that they are indeed ordinals.
- b) Let α denote an ordinal. Prove that $\alpha^+ := \alpha \cup \{\alpha\}$ is again an ordinal.
- c) Give an example of a *limit ordinal*, i.e. one which is *not* of the form α^+ nor the empty set. Again, prove that it is an ordinal.
- d) Similarly to Exercise 9, draw two ordered sets: one isomorphic to the ordinal $\omega + 2$ and one isomorphic to $\omega \times 2$.

EXERCISE 12:

Which of the Peano axioms are satisfied by the structure $(\omega \times 2, \alpha \mapsto \alpha^+)$, which ones are violated?

EXERCISE 13:

Prove that $\{\alpha : \alpha \text{ ordinal}\}\$ is not a set.

EXERCISE 14:

Abbreviate $1 := \emptyset^+$ and $2 := 1^+$. Prove "1 + 1 = 2" by stating explicitly an isomorphism between ordered sets $1 \uplus 1$ and 2. (This knowledge will come handy to impress your non-mathematician friends or parents...)

EXERCISE 15:

Show that ordinal arithmetic is in general not commutative; specifically, prove:

- a) $1 + \omega = \omega < \omega + 1$
- b) $2 \times \omega = \omega < \omega \times 2$.