Introduction to Mathematical Logic

SS 2010, Exercise Sheet \#1

EXERCISE 7:

Recall the Peano axioms for (\mathbb{N}, S).
a) Define addition $A(n, m)=n+m$ recursively in terms of S.
b) Use induction to conclude that your definition satisfies commutativity and associativity.
c) Now forget a) and b) and define A axiomatically.
d) Do similarly for multiplication $M(n, m)=n \cdot m$
e) and for exponentiation $E(n, m)=n^{m}$.
f) Conclude from the above axioms (!) that $(x+1)^{2}=x^{2}+2 \cdot x+1$ holds for all $x \in \mathbb{N}$.
g) Prove (not restricting ${ }^{1}$ to the above axioms) that the following holds for all $x, y \in \mathbb{N}$:

$$
\begin{aligned}
&\left((1+x)^{y}+\left(1+x+x^{2}\right)^{y}\right)^{x} \cdot\left(\left(1+x^{3}\right)^{x}+\left(1+x^{2}+x^{4}\right)^{x}\right)^{y} \\
&=\left((1+x)^{x}+\left(1+x+x^{2}\right)^{x}\right)^{y} \cdot\left(\left(1+x^{3}\right)^{y}+\left(1+x^{2}+x^{4}\right)^{y}\right)^{x}
\end{aligned}
$$

Hint: Check that $x^{2}-x+1$ divides both $x^{3}+1$ and $x^{4}+x^{2}+1$.

EXERCISE 8:

Count: $\quad 1,2,3,4, \ldots, \infty$.
How would you continue? And how then on?
And how after infinitely many further steps? And how then?

EXERCISE 9:

a) How does the picture on the back of the page in landscape indicate a partially ordered set?

Why is the indicated order not total?
Write down explicitly (a set and) the order relation that gives rise to the picture.
b) Draw a similar picture for the set \mathbb{N} of natural numbers (with respect to order " $\leq "$)
c) and for the 'numbers' counted in Exercise 8.

EXERCISE 10:

a) Is the set \mathbb{N} of natural numbers ${ }^{2}$ well-ordered with respect to " $<$ "?
b) How about the set \mathbb{R} of real numbers?
c) How about \mathbb{N}, but now with respect to " $>$ "?

[^0]

[^0]: ${ }^{1}$ In fact Alex Wilkie proved in 1980 that this cannot be concluded from the above axioms alone.
 ${ }^{2}$ as you know them, i.e. non-axiomatized

