Introduction to Mathematical Logic

SS 2010, Exercise Sheet #1

EXERCISE 7:

Recall the Peano axioms for (\mathbb{N}, S) .

- a) Define addition A(n,m) = n + m recursively in terms of *S*.
- b) Use induction to conclude that your definition satisfies commutativity and associativity.
- c) Now forget a) and b) and define *A* axiomatically.
- d) Do similarly for multiplication $M(n,m) = n \cdot m$
- e) and for exponentiation $E(n,m) = n^m$.
- f) Conclude from the above axioms (!) that $(x+1)^2 = x^2 + 2 \cdot x + 1$ holds for all $x \in \mathbb{N}$.
- g) Prove (*not* restricting¹ to the above axioms) that the following holds for all $x, y \in \mathbb{N}$:

$$\left(\left(1+x \right)^{y} + \left(1+x+x^{2} \right)^{y} \right)^{x} \cdot \left(\left(1+x^{3} \right)^{x} + \left(1+x^{2}+x^{4} \right)^{x} \right)^{y}$$

$$= \left(\left(1+x \right)^{x} + \left(1+x+x^{2} \right)^{x} \right)^{y} \cdot \left(\left(1+x^{3} \right)^{y} + \left(1+x^{2}+x^{4} \right)^{y} \right)^{x}$$

Hint: Check that $x^2 - x + 1$ divides both $x^3 + 1$ and $x^4 + x^2 + 1$.

EXERCISE 8:

Count: 1, 2, 3, 4, ..., ∞ . How would you continue? And how then on? And how after infinitely many further steps? And how then?

EXERCISE 9:

 a) How does the picture on the back of the page in landscape indicate a partially ordered set? Why is the indicated order not total?

Write down explicitly (a set and) the order relation that gives rise to the picture.

- b) Draw a similar picture for the set \mathbb{N} of natural numbers (with respect to order " \leq ")
- c) and for the 'numbers' counted in Exercise 8.

EXERCISE 10:

- a) Is the set \mathbb{N} of natural numbers² well-ordered with respect to "<"?
- b) How about the set \mathbb{R} of real numbers?
- c) How about \mathbb{N} , but now with respect to ">"?

¹In fact Alex Wilkie proved in 1980 that this cannot be concluded from the above axioms alone. 2 as you know that i.e. non axiomatized

²as you know them, i.e. non-axiomatized

