Fachbereich Mathematik Prof. B. Farkas Yong He 14.05.2010

11. Übung zu Lineare Algebra f. Ph.

Aufgabe 29 – Matrizen, Basen, Gleichungssysteme:

Gegeben sei
$$B:=\{\begin{pmatrix}1\\0\\0\\0\end{pmatrix},\begin{pmatrix}1\\2\\0\\0\end{pmatrix},\begin{pmatrix}1\\2\\3\\0\end{pmatrix},\begin{pmatrix}1\\2\\3\\4\end{pmatrix}\}$$

- a) Zeigen Sie: B ist eine Basis des \mathbb{R}^4 .
- b) Schreiben Sie den Vektor $b := (4, 6, 6, 4)^t$ als Koordinatenvektor bzgl. B.
- c) Gegeben sei ein Vektor $c:=(1,2,3,4)_B^t$ bzgl. der Basis B. Stellen Sie den Vektor c bzgl. der Standardbasis dar. Geben Sie die Transformationsmatrix von B nach der Standardbasis an.
- d) Gibt es eine Basis, bezüglich deren der Vektor $b := (4, 6, 6, 4)^t$ die Darstellung $(1, 0, 0, 0)^t$ hat?

Aufgabe 30 – Gleichungssysteme:

Seien \mathbb{C}^2 ein Vektorraum über \mathbb{C} und $c\in\mathbb{C}$ eine Konstante. Wir betrachten ein lineares Gleichungssystem

$$iz_1 + z_2 = c$$
$$z_1 - z_2 = 1 + i$$

- a) Bestimmen Sie alle Lösungen in \mathbb{C}^2 des linearen Gleichungssystems.
- b) Gibt es ein $c \in \mathbb{C}$, so dass das LGS keine Lösung besitzt?

Aufgabe 31 – Determinanten:

Berechnen Sie die Determinanten folgender Matrizen mithilfe des Entwicklungssatzes.

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x \end{pmatrix}$$

Hausaufgabe 19 – Permutationen:

Sei $\pi: \{1,2,3,4\} \to \{1,2,3,4\}$ die bijektive Abbildung (sog. Permutation) mit $\pi(1) = 2$, $\pi(2) = 3$, $\pi(3) = 1$ und $\pi(4) = 4$. Wir definieren $f_i = e_{\pi(i)}$, wobei e_i , $i = 1, \ldots, 4$ die kanonische Basis ist.

- i) Zeigen Sie, dass f_1, \ldots, f_4 auch eine Basis ist.
- ii) Stellen Sie die Matrix M der Basiswechsel von e_1, \ldots, e_4 nach f_1, \ldots, f_4 auf und berechnen Sie $\det(M)$.

Hausaufgabe 20 – Determinante:

Gegeben sei die Matrix

$$A = \begin{pmatrix} 0 & 1 & -2 & -4 \\ -1 & 0 & 2 & 1 \\ 2 & -2 & 0 & -3 \\ 4 & -1 & 3 & 0 \end{pmatrix}$$

- i) Berechnen Sie det(A) durch Zeilenumformungen.
- ii) Bestimmen Sie die Determinanten der Matrizen $A^t, A^{-1}, A^2, A \cdot A^t$.