Prof. Dr. Ulrich Kohlenbach PD Dr. Achim Blumensath Dr. Eyvind Briseid

wahr falsch

Sommersemester 2010

Analysis II Probeklausur

Schreiben Sie bitte auf jede Seite Ihren Namen und numerieren Sie die Seiten durch. Bitte falten Sie am Ende der Klausur das Deckblatt und legen die übrigen Blätter hinein.		Vo	Nachname: Vorname: MatrNr.:							
Hinweise										
• Die Pri	üfungszeit beträgt 90	Minut	en.							
• Es kön: Fall aus	nen maximal 57 Punk s.	cte erre	eicht we	rden. D	avon rei	chen 4	8 Pun	kte für die	Note 1 auf jede	n
	rten sollten immer be n, es wird ausdrücklic	-				der Lös	sung l	ninreichen	d erklärt sein,	es
• Viel Gl	lück!									
	Aufgabe	1	2	3	4	5	Σ	Note		
_ _	Punkte, maximal	9	12	12	12	12	57			
-	erreichte Punkte									
Aufgabe 1									9 Punk	te
Welche der fo	olgenden Aussagen sir	nd wah	nr? (Bitte	e ankreı	ızen, fal	sche A	ntwor	ten geben	Punktabzug.)	
(a) Sei $f_n : \mathbb{R}$ konvergiert.	$^k \to \mathbb{R}^m$ für $n \in \mathbb{N}$ ein	e Folg	e von st	etigen F	unktior	ien, die	punk	tweise geg	$\operatorname{gen} f: \mathbb{R}^k \to \mathbb{R}$	m
wahr falsch										
	Sind alle f_n gleichmäßig stetig, so konvergiert die Folge $(f_n)_n$ gleichäßig gegen f . Angenommen, alle f_n sind stetig differenzierbar und $(f_n)_n$ konvergiert gleichmäßig									
	gegen f . Wenn fü konvergiert, so ist	r alle	i die Fo	$lge (D_{i})$	$(f_n)_n$ de			-	-	
(b)										

In einem metrischen Raum konvergiert jede Cauchy-Folge.

Jede Norm induziert eine Metrik.

Jede Metrik induziert eine Norm.

In einem kompakten metrischen Raum konvergiert jede Folge.

In einem kompakten metrischen Raum ist jede abgeschlossene Menge kompakt.

In einem kompakten metrischen Raum ist jede kompakte Menge abgeschlossen.

Aufgabe 2 12 Punkte

(a) Sei $U \subseteq \mathbb{R}^n$ offen, $f: U \to \mathbb{R}$ stetig in Punkt $x_0 \in U$ und $g: U \to \mathbb{R}$ differenzierbar in x_0 mit $g(x_0) = 0$. Zeigen Sie, daß grad $(fg)(x_0)$ existiert und daß grad $(fg)(x_0) = f(x_0) \cdot \operatorname{grad} g(x_0)$.

- (b) Bestimmen Sie, ob die Richtungsableitung $D_{\nu}f$ der Funktion $f: \mathbb{R}^3 \to \mathbb{R}$ mit $f(x, y, z) = x^2 + ze^x$ in Richtung $\nu = \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$ existiert und berechnen Sie diese gegebenenfalls.
- (c) Sei $F: \mathbb{R}^2 \to \mathbb{R}$ die Funktion mit $F(x, y) = e^{\sin(xy)} + x^2 2y 1$. Zeigen Sie, daß es für hinreichend kleine x eine differenzierbare Funktion $\varphi(x)$ gibt mit $\varphi(x) = 0$ und $F(x, \varphi(x)) = 0$. Berechnen Sie $\varphi'(x)$.

Aufgabe 3 12 Punkte

- (a) Bestimmen Sie die Extrema der Funktion $f: \mathbb{R}^3 \to \mathbb{R}$ mit $f(x, y, z) = x^2 + y^2 + z^2$ unter der Nebenbedingung x + y + z = 1.
- (b) Sei $f: \mathbb{R}^2 \to \mathbb{R}$ eine zweimal stetig differenzierbare Funktion und $x_1, x_2, x_3 \in \mathbb{R}^2$ Punkte mit $(\operatorname{grad} f)(x_i) = 0$ und $(\operatorname{Hess} f)(x_i) = H_i$, für die unten angegebenen Matrizen H_i . Kann man aus diesen Informationen schließen, ob f in x_i ein lokales Minimum, lokales Maximum, oder kein lokales Extremum besitzt?

$$H_1 = \begin{pmatrix} 4 & 1 \\ 1 & \frac{1}{2} \end{pmatrix}, \quad H_2 = \begin{pmatrix} 3 & -2 \\ -2 & 1 \end{pmatrix}, \quad H_3 = \begin{pmatrix} -1 & 2 \\ 2 & -8 \end{pmatrix}.$$

Aufgabe 4 12 Punkte

Bestimmen Sie diejenigen $\alpha \in \mathbb{R}$, für welche das uneigentliche Riemann-Integral

$$\int_0^\infty \frac{\mathrm{d}x}{x^\alpha (1+x)^2}$$

existiert.

Aufgabe 5 12 Punkte

Welche der folgenden Funktionen $f_i: \mathbb{R}^2 \to \mathbb{R}^2$ sind Gradientenfelder? Bestimmen Sie entweder eine Funktion $\varphi_i: \mathbb{R}^2 \to \mathbb{R}$ mit $f_i = \operatorname{grad} \varphi_i$, oder finden Sie eine geschlossene Kurve γ_i mit $\int_{\gamma_i} f_i(x) \cdot dx \neq 0$.

(a)
$$f_1(x, y) = (2xy - y^2, x^2 - 2xy)$$

(b)
$$f_2(x, y) = (x, xy)$$

(c)
$$f_3(x, y) = (e^{-y}, -xe^{-y})$$