Fachbereich Mathematik Prof. Dr. Ulrich Kohlenbach PD Dr. Achim Blumensath Dr. Eyvind Briseid

02.06.2010

7. Tutorium Analysis II Sommersemester 2010

Flächenfüllende Kurven

Obwohl dies paradox erscheinen mag, gibt es Kurven, welche höher-dimensionale Objekte wie Quadrate oder Würfel vollständig ausfüllen. Erste Beispiele solcher Kurven wurden 1890 von G. Peano konstruiert; man nennt sie heute flächenfüllende (bzw. raumfüllende) Kurven, oder auch *Peano-Kurven*. Weitere Beispiele gehen zurück auf D. Hilbert (1891), E.H. Moore (1900), H. Lebesgue (1904), W. Sierpiński (1912), G. Pólya (1913) und andere. Ein Standardwerk über das Thema ist H. Sagan, *Space-filling curves*, Springer-Verlag, 1994.

Im folgenden präsentieren wir eine von I.J. Schoenberg (1938) beschriebene Variante von Lebesgues flächenfüllender Kurve.

Es sei $f: \mathbb{R} \to \mathbb{R}$ die gerade, 2-periodische Funktion, welche festgelegt ist durch

$$f(t) = \begin{cases} 0 & \text{für } 0 \le t \le \frac{1}{3} \\ 3t - 1 & \text{für } \frac{1}{3} \le t \le \frac{2}{3} \\ 1 & \text{für } \frac{2}{3} \le t \le 1 \end{cases}, \quad f(-t) = f(t), \ f(t+2) = f(t).$$

Wir setzen

$$x(t) = \frac{1}{2} \sum_{k=0}^{\infty} \frac{f(3^{2k}t)}{2^k}, \quad y(t) = \frac{1}{2} \sum_{k=0}^{\infty} \frac{f(3^{2k+1}t)}{2^k}.$$

1

Die Schoenberg-Kurve ist definiert als $\gamma_{sc}: [0,1] \to [0,1]^2, \gamma_{sc}(t) = (x(t),y(t)).$

(T7.1)

Man zeige:

(a) Für alle $t \in [0, 1]$ ist tatsächlich $\gamma_{sc}(t) \in [0, 1]^2$.

(b) Die Funktion γ_{sc} ist stetig.

Hinweis: Benutzen Sie das Konvergenzkriterium von Weierstraß.

(c) Die Funktion γ_{sc} ist surjektiv.

Hinweis: Sei $(x_0, y_0) \in [0, 1]^2$. Man betrachte dyadische Entwicklungen von x_0 und y_0 (vgl. Forster, Analysis I, Seite 46 f.):

$$x_0 = \sum_{k=0}^{\infty} \frac{a_k}{2^{k+1}}, \ y_0 = \sum_{k=0}^{\infty} \frac{b_k}{2^{k+1}}, \ a_k, b_k \in \{0, 1\}.$$

Man definiere $t_0 = \frac{2a_0}{3} + \frac{2b_0}{3^2} + \frac{2a_1}{3^3} + \frac{2b_1}{3^4} + \dots$ und prüfe nach, dass $f(3^{2k}t_0) = a_k$ und $f(3^{2k+1}t_0) = b_k$.

(T7.2)

Man zeige:

Das Bild einer rektifizierbaren Kurve in \mathbb{R}^2 kann nicht das Quadrat $[0,1]^2$ enthalten. Es folgt, dass γ_{sc} nicht rektifizierbar ist.